Fuji Electric France S.A.S.

Field-mounted Two-wire Signal Conditioners

2-WIRE UNIVERSAL TEMPERATURE TRANSMITTER (HART® ${ }^{\circledR}$ communication, intrinsically safe/explosion-proof)

MODEL \& SUFFIX CODE SELECTION			
		FRC1011	
MODEL			
ENCLOSURE			
0 : None *1			
(1) : Diecast aluminium			
2: Stainless steel casting			
SAFETY APPROVAL			
A : None			
(C) CENELEC flameproof (ATEX)			
E : CENELEC intrinsically safe (ATEX)			
LCD DISPLAY 0 : Without			
0 : Without (1) : With			
WIRING CONDUIT *2			
0 : None			
(1) : $1 / 2$ NPT			
2: M20 $\times 1.5$			
3 : PG 13.5			
*1. Choose the suffix code 0 for "Wiring Conduit"			
*2. Confirm selectable combinations of approval and wiring duit types in the table below.			
SELECTABLE WIRING CONDUITS SPECIFIC TO EACH APPROVAL ' N ' marked combinations are not selectable.			
APPROVAL CONDUIT	A	C	E
0	Y	N	Y
1	Y	Y	Y
2	Y	Y	Y
3	Y	N	Y

RELATED PRODUCTS

- PC Configurator Software
- HART modem*

MACTek VIATOR RS232 HART ${ }^{\circledR}$ IF recommended

- Hand-held communicator*
${ }^{*}$ Consult HART ${ }^{\circledR}$ Communication Foundation (HCF) web site : www.hartcomm.org

GENERAL SPECIFICATIONS

Degree of protection : NEMA 4X, IP66/IP67
Wiring conduit : See "Model \& Suffix Code".
Electrical connection : M3.5 screw terminals (torque $0.8 \mathrm{~N} \cdot \mathrm{~m}$)
Materials
Transmitter housing : Flame-resistant resin (black)
Screw terminals : Nickel-plated brass
Enclosure :
Diecast aluminium standard (polyurethane coated) or stainless steel casting (equivalent to type 316 epoxy resin coated).

Functions \& Features

- Universal input: mV, V, T/C and RTD
- High accuracy
- HART communication
- Intrinsically safe and explosion-proof approval
- CE marking (conforms to ATEX and EMC)
- Optional stainless steel enclosure
- Programming via hand-held communicator or via PC
- A wide variety of T/C and RTD types
- Self diagnostics
- Input-output isolated

Enclosure color :
Body : Silver
Cover: Blue (equivalent to Munsell GPB3.5/10.5) Silver for stainless steel
Mounting bracket assembly :
Stainless steel 304
Applicable pipe
1" $1 / 2$ min.; 2" max.
Isolation : Input to output to outdoor enclosure
User-configurable parameters :
Input sensor type
Number of wires (RTD)
Input range

- Output range (via HART® only)
- Output calibration
- HART communication mode HART network mode
Burnout (T/C \& RTD) :
Upscale, downscale or no burnout selectable (standard: upscale);
Also detects wire breakdown and overrange input exceeding the electrical design limit for DC input.
Cold junction compensation (T/C) :
CJC sensor incorporated
Damping time
0 to 30 sec . (standard : 0)

LCD DISPLAY (option)

HART ${ }^{\circledR}$ COMMUNICATION

Protocol :
HART® communication protocol
HART ${ }^{\circledR}$ address range :
$0-15$ (standard: 0)
Transmission speed : 1200 bps
Digital current :
Approx. 1mA p-p when communicating
Character format :
1 Start Bit, 8 Data Bits, 1 Odd Parity Bit, 1 Stop Bit
Distance :
1.5 kilometers (0.9 mile)

HART $^{\circledR}$ communication mode :
Master-Slave Mode and Burst Mode (standard: Master-Slave)
HART ${ }^{\circledR}$ network mode :
Point-to-Point Mode and Multi-drop Mode; automatically set to Multi-drop Mode when the address is set to other than 0 .

INPUT

The input is factory set for use with 3-wire Pt 100,0 to $150^{\circ} \mathrm{C}$.
See Table 1 for the available input type, the minimum span and the maximum range.

■ DC mV \& V
Input resistance : $1 \mathrm{M} \Omega$ minimum

- THERMOCOUPLE

Input resistance : $1 \mathrm{M} \Omega$ minimum
Burnout sensing : 130nA $\pm 10 \%$

■ RTD (2-wire, 3-wire or 4-wire)
Input resistance : $1 \mathrm{M} \Omega$ minimum
Excitation: $\quad 0.2 \mathrm{~mA} \pm 10 \%$
Allowable leadwire resistance : Max. 20Ω per wire

OUTPUT

Output range : 4-20mA DC
Zero adjustment : 3.8-7.2mA (standard: 4mA)
Span adjustment : 12.8-17.6mA (standard: 16mA)
Operational range : $3.8-21.6 \mathrm{~mA}$
Load resistance vs. supply voltage:
Load Resistance $(\Omega)=\frac{\text { Supply Voltage (V) }-12(\mathrm{~V})}{0.024(\mathrm{~A})}$
(including leadwire resistance)

INSTALLATION

Supply voltage :

$$
\begin{aligned}
& 12-42 \mathrm{~V} \text { DC (non-approved) } \\
& 12-28 \mathrm{~V} \text { DC (approved) }
\end{aligned}
$$

Operating temperature:
-40 to $+85^{\circ} \mathrm{C}$ Electronics
(See Safety Parameters for use in a hazardous location.)
-30 to $+80^{\circ} \mathrm{C}$ Display (full visibility)
Operating humidity:
0 to 95\% RH (non-condensing)
Dimensions :
See External Dimensions.
Weight :
FRC0: Approx. 150 g including the LCD
FRC1: Approx. 1.3 kg
FRC2: Approx. 4.0 kg

PERFORMANCE

Accuracy :

See Table 1 and "Explanation of Terms"
Cold junction compensation error : $\leq \pm 0.5^{\circ} \mathrm{C}$
Temperature coefficient :
$\pm 0.015 \% /{ }^{\circ} \mathrm{C}$ of max. range at -5 to $+55^{\circ} \mathrm{C}$

T/C and DC mV :
Pt 100 , span $\geq 100^{\circ} \mathrm{C}: \quad \pm 0.015 \% /{ }^{\circ} \mathrm{C}$ at -40 to $+55^{\circ} \mathrm{C}$
$\pm 0.03 \% /{ }^{\circ} \mathrm{C}$ at 55 to $85^{\circ} \mathrm{C}$
Start-up time: Approx. 8 seconds
Response time :
1 second $(0-63 \%)$ with damping time set to 0 and when not communicating via HART^{\oplus}.
Supply voltage effect :
$\pm 0.003 \% \times$ [Output Span] / 1V
Insulation resistance : $\geq 100 \mathrm{M} \Omega$ with 500 V DC (input to output)
Dielectric strength : 1500 V AC /1 minute (input to output to outdoor enclosure)

STANDARDS \& APPROVALS

CE conformity: ATEX Directive (94/9/EC)
Ex ia EN 50020
Exd EN 60079-1
EMC Directive (2004/108/EC)
EMI EN 61000-6-4
EMS EN 61000-6-2
Safety approval
CENELEC: Intrinsically safe (ATEX)
Ex II 1G, Ex ia IIC; T4, T5 and T6
(EN 50020 : 2002)
CENELEC: Flameproof (ATEX) **
〈区्x II 2G, Ex d IIC; T4, T5 and T6
(EN 60079-1 : 2007)
**FRC1 or FRC2

SAFETY PARAMETERS

Operating temperature for CENELEC (ATEX):

T 4	-40 to $+80^{\circ} \mathrm{C}$		
T 5	-40 to $+65^{\circ} \mathrm{C}$		
T 6	-40 to $+50^{\circ} \mathrm{C}$		
Ui	30 V DC	Uo	6.4 V DC
li	96 mA DC	lo	30 mADC
Pi	0.72 W	Po	48 mW
Ci	$0 \mu \mathrm{~F}$	Co $20 \mu \mathrm{~F}$	
Li	0 mH	Lo	10 mH

EXPLANATIONS OF TERMS

■ ACCURACY

This transmitter's accuracy is theoretically defined as the addition of A / D and D / A conversion errors:

Accuracy $=A / D$ Conversion Error + D/A Conversion Error
The A/D conversion error means that measured as HART signal which is A / D converted from the analog input signal.
The D/A conversion error of this transmitter is relatively very small so that it does not really affect the unit's overall performance.
The "Accuracies" given in Table 1 therefore equals the A/D conversion error.
The temperature drift (coefficient) or the cold junction compensation error is not included in the "Accuracy."

■ CALCULATION EXAMPLES OF OVERALL ACCURACY IN \%

- DC Voltage

1) $0-200 \mathrm{mV}$

Absolute value accuracy (Table 1): $40 \mu \mathrm{~V}$
$40 \mu \mathrm{~V} / 200000 \mu \mathrm{~V} \times 100=0.02 \%<0.1 \%$
n' Overall accuracy $= \pm 0.1 \%$ of span
2) $0-4 \mathrm{mV}$

Absolute value accuracy (Table 1): $10 \mu \mathrm{~V}$
$10 \mu \mathrm{~V} / 4000 \mu \mathrm{~V} \times 100=0.25 \%>0.1 \%$
In Overall accuracy $= \pm 0.25 \%$ of span

- Thermocouple

1) K thermocouple, $0-1000^{\circ} \mathrm{C}$

Absolute value accuracy (Table 1): $0.25^{\circ} \mathrm{C}$
$0.1 \% \times 1000^{\circ} \mathrm{C}=1^{\circ} \mathrm{C}>0.25^{\circ} \mathrm{C}$
CJC error $\left(0.5^{\circ} \mathrm{C}\right)$ added: $1+0.5=1.5^{\circ} \mathrm{C}$
$1.5^{\circ} \mathrm{C} / 1000^{\circ} \mathrm{C} \times 100=0.15 \%$
. $1+$ Overall accuracy including CJC error $= \pm 0.15 \%$ of span
2) K thermocouple, $50-150^{\circ} \mathrm{C}$

Absolute value accuracy (Table 1): $0.25^{\circ} \mathrm{C}$
$0.1 \% \times(150-50)^{\circ} \mathrm{C}=0.1^{\circ} \mathrm{C}<0.25^{\circ} \mathrm{C}$
CJC error $\left(0.5^{\circ} \mathrm{C}\right)$ added: $0.25+0.5=0.75^{\circ} \mathrm{C}$
$0.75^{\circ} \mathrm{C} /(150-50)^{\circ} \mathrm{C} \times 100=0.75 \%$
Overall accuracy including CJC error $= \pm 0.75 \%$ of span

- RTD

1) Pt $100,-200-800^{\circ} \mathrm{C}$

Absolute value accuracy (Table 1): $0.15^{\circ} \mathrm{C}$
$0.15^{\circ} \mathrm{C} /(800-200)^{\circ} \mathrm{C} \times 100=0.015 \%<0.1 \%$
In* Overall accuracy $= \pm 0.1 \%$ of span
2) Pt $100,0-100^{\circ} \mathrm{C}$

Absolute value accuracy (Table 1): $0.15^{\circ} \mathrm{C}$
$0.15^{\circ} \mathrm{C} / 100^{\circ} \mathrm{C} \times 100=0.15 \%>0.1 \%$
n Overall accuracy $= \pm 0.15 \%$ of span

INPUT TYPE, RANGE \& ACCURACY

■ INPUT TYPE, RANGE \& ACCURACY
Table 1

INPUT TYPE	MIN. SPAN	MAXIMUM RANGE	ACCURACY					
DC mV \& V	4 mV	-50 to +1000 mV	$\pm 0.1 \%$ or $\pm 10 \mu \mathrm{~V}$, whichever is greater (F.S. input $\leq 50 \mathrm{mV}$) $\pm 0.1 \%$ or $\pm 40 \mu \mathrm{~V}$, whichever is greater (F.S. input $\leq 200 \mathrm{mV}$) $\pm 0.1 \%$ or $\pm 60 \mu \mathrm{~V}$, whichever is greater (F.S. input $\leq 500 \mathrm{mV}$) $\pm 0.1 \%$ or $\pm 80 \mu \mathrm{~V}$, whichever is greater (F.S. input $>500 \mathrm{mV}$)					
Thermocouple	${ }^{\circ} \mathrm{C}$				${ }^{\circ} \mathrm{F}$			
	MIN. SPAN	MAXIMUM RANGE	CONFORMANCE RANGE	$\underset{{ }_{* 1}}{\operatorname{ACCURACY}}$	MIN. SPAN	MAXIMUM RANGE	CONFORMANCE RANGE	$\begin{gathered} \text { ACCURACY } \\ { }^{*} 1 \end{gathered}$
(PR)	20	0 to 1760	0 to 1760	± 1.00	36	32 to 3200	32 to 3200	± 1.80
K (CA)	20	-270 to +1370	-150 to +1370	± 0.25	36	-454 to +2498	-238 to +2498	± 0.45
E (CRC)	20	-270 to +1000	-170 to +1000	± 0.20	36	-454 to +1832	-274 to +1832	± 0.36
J (IC)	20	-210 to +1200	-180 to +1200	± 0.25	36	-346 to +2192	-292 to +2192	± 0.45
T (CC)	20	-270 to +400	-170 to +400	± 0.25	36	-454 to +752	-274 to +752	± 0.45
B (RH)	20	100 to 1820	400 to 1760	± 0.75	36	212 to 3308	752 to 3200	± 1.35
R	20	-50 to +1760	200 to 1760	± 0.50	36	-58 to 3200	392 to 3200	± 0.90
S	20	-50 to +1760	0 to 1760	± 0.50	36	-58 to +3200	32 to 3200	± 0.90
W	20	0 to 2315	0 to 2315	± 0.25	36	32 to 4199	32 to 4199	± 0.45
N	20	-270 to +1300	-130 to +1300	± 0.30	36	-454 to +2372	-202 to +2372	± 0.54
U	20	-200 to +600	-200 to +600	± 0.20	36	-328 to +1112	-328 to +1112	± 0.36
L	20	-200 to +900	-200 to +900	± 0.25	36	-328 to +1652	-328 to +1652	± 0.45
P (Platinel II)	20	0 to 1395	0 to 1395	± 0.25	36	32 to 2543	32 to 2543	± 0.45
		${ }^{\circ} \mathrm{C}$			${ }^{\circ} \mathrm{F}$			
RTD	MIN. SPAN	MAXIMUM RANGE		$\begin{gathered} \text { ACCURACY } \\ \text { *2 } \end{gathered}$	MIN. SPAN	MAXIMUM RANGE		$\begin{gathered} \text { ACCURACY } \\ { }^{2} 2 \end{gathered}$
Pt 100 (JIS '97, IEC)	20	-200 to +850		± 0.15	36	-328 to +1562		± 0.27

*1. [Accuracy or $\pm 0.1 \%$ of span, whichever is greater] + Cold Junction Compensation Error $0.5^{\circ} \mathrm{C}$
*2. Or $\pm 0.1 \%$ of span, whichever is greater. (For 2- or 3-wire RTD, the value is valid by the sensor calibration after the wiring is done.)

Hazardous Location Non-Hazardous Location

*1. A safety barrier must be installed for the intrinsic safety.
The safety barrier must meet the Ex-data of this unit and must be approved for the hazardous location. *2. Optional
*3. Be sure to earth the unit s enclosure to meet the intrinsic safe or explosion-proof (flameproof) requirements.
*4. Close across the terminals $1 \& 2$ for 2 -wire/3-wire RTD input.
*5. Limited to 250-1100 2 for HART communication.

EXTERNAL DIMENSIONS \& MOUNTING REQUIREMENTS unit: mm (inch)

Fuji Electric France S.A.S.

46, Rue Georges Besse - Z I du Brézet
63039 Clermont-Ferrand cedex 2 - FRANCE
France : Tél. 0473982698 - Fax 0473982699
International : Tél. (33) 473982698 - Fax. (33) 473982699
E-mail : sales.dpt@fujielectric.fr

[^0]
[^0]: Fuji Electric can accept no responsibility for possible errors in catalogues, brochures and other printed material. Fuji Electric reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. All rights reseved.

