FEATURES

\square Converting a DC input into a standard process signal.
\square Wide input and output range selection.
\square Isolation: Input to output to power.
\square DIN rail type.

ORDERING INFORMATION

MODEL:S4T-DT-	
	\square
DC Input Range (Input Resistance)	
$\mathrm{V} 1: 0 \sim 50 \mathrm{mV}^{*}$	$(\geqq 200 \mathrm{~K} \Omega)$
$\mathrm{V} 2: 0 \sim 5 \mathrm{~V}$	$(\geqq 1 \mathrm{M} \Omega)$
$\mathrm{V} 3: 1 \sim 5 \mathrm{~V}$	$(\geqq 1 \mathrm{M} \Omega)$
$\mathrm{V} 4: 0 \sim 10 \mathrm{~V}$	$(\geqq 1 \mathrm{M} \Omega)$
$\mathrm{A} 1: 0 \sim 1 \mathrm{~mA}$	$(\leqq 1 \mathrm{~K} \Omega)$
$\mathrm{A} 3: 0 \sim 20 \mathrm{~mA}$	$(\leqq 50 \Omega)$
A4: 4~20mA	$(\leqq 50 \Omega)$
$00:$ Option	
$* 0 \sim 75 \mathrm{mV}$ is available	

DC Output Range (Output Resistance)
V2: $0 \sim 5 \mathrm{~V} \quad(\geqq 1 \mathrm{~K} \Omega)$
V3: $1 \sim 5 \mathrm{~V} \quad(\geqq 1 \mathrm{~K} \Omega)$
$\mathrm{V} 4: 0 \sim 10 \mathrm{~V} \quad(\geqq 1 \mathrm{~K} \Omega)$
$\mathrm{A} 1: 0 \sim 1 \mathrm{~mA} \quad(0 \sim 10 \mathrm{~K} \Omega)$
$\mathrm{A} 2: 0 \sim 10 \mathrm{~mA} \quad(0 \sim 1.5 \mathrm{~K} \Omega)$
A3: $0 \sim 20 \mathrm{~mA} \quad(0 \sim 750 \Omega)$
A4: $4 \sim 20 \mathrm{~mA}$
00: Option
Power Supply
A: AC / DC 90~260V
B: DC $20 \sim 60 \mathrm{~V}$
0: Option

THE OUTSIDE DIMENSION (UNIT: mm)

DEMAND FOR MOUNTING (UNIT: mm)

SPECIFICATION

Accuracy	$\pm 0.1 \% \mathrm{RO}$.
Response time	$\leqq 400 \mathrm{msec} .0 \sim 99 \%$
	(Option) $\leqq 50 \mathrm{msec} .0 \sim 99 \%$ *
Output ripple	$\leq 0.5 \%$ RO. (Peak)
Power supply	AC / DC $90 \sim 260 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
	DC 20 ~ 60V
Power consumption	at 240 V , $\leqq \mathrm{AC} 6 \mathrm{VA}$, § DC 5 W
	$110 \mathrm{~V}, \leqq \mathrm{AC} 4 \mathrm{VA}, \leqq \mathrm{DC} 3 \mathrm{~W}$
Temperature coefficient	$\leqq 0.015 \% /{ }^{\circ} \mathrm{C}$
Operating temperature	$-5 \sim 50^{\circ} \mathrm{C}$
Storage temperature	$-10 \sim 70^{\circ} \mathrm{C}$
Max. Relative humidity	90\%
Isolation	Input/Output/Power
Dielectric strength	AC $1.8 \mathrm{KV} / \mathrm{min}$.
Insulation resistance	$\geqq 100 \mathrm{M} \Omega$, DC 500 V
Electrostatic discharge	..IEC 61000-4-2.
Electromagnetic fields immunity	IEC 61000-4-3.
Electrical transient in burst	IEC 61000-4-4.
Withstanding impulse voltage	IEC 61000-4-5.
Immunity to voltage dips	IEC 61000-4-11.
Weight	Abt.120g

*High response time, output ripple be according to input ripple.

SCHEMATIC CIRCUITRY \& CONNECTION DIAGRAM

