Siedle Group

NOVOHALL
 Rotary Sensor touchless technology transmissive

Series RFC4800 analog

Special features

- fully touchless - no shaft or seals to wear
- measure directly through any
non-ferromagnetic material
- electrical range up to 360°
- linearity ± 0.5 \%
- simple mounting
- large allowable radial offset
for magnetic pickup
- protection class IP67/IP69k
- single and redundant versions
- unlimited mechanical lifetime
- resolution 12 bit
- wide temperature range
$-40^{\circ} \mathrm{C}$ up to $+125^{\circ} \mathrm{C}$
- optimized versions for mobile
or industrial applications
- single channel or redundant
versions
- for digital interface versions
- see separate data sheet

The RFC 4800 utilizes a separate magnet or magnetic position marker, attached to the rotating shaft to be measured.

The orientation of the magnetic field is measured and an analog voltage representing the angle is the output signal.

The two-part design, with the RFC sensor itself, and its magnetic position marker, offers great flexibility when mounting. The absence of shaft and bearing makes the assembly much less sensitive to axial and radial application tolerances. Measurements can be made transmissively through any non-ferromagnetic material.

The housing is made of high grade temperature-resistant plastic material. Elongated holes allow for simple mounting and easy mechanical adjustment. The sensor is totally sealed and is not sensitive to dust, dirt or moisture.

Electrical connection is made via a shielded cable or lead wires, or by optional M12 connector.

Description	
Housing	high grade, temperature resistant plastic
Electrical connections	shielded cable AWG $26\left(0.14 \mathrm{~mm}^{2}\right)$ unshielded cable AWG $26\left(0.14 \mathrm{~mm}^{2}\right)$ lead wires AWG $20\left(0.5 \mathrm{~mm}^{2}\right)$ M12 connector

When the indicator on the position marker is pointed towards the cable, the sensor output is in an electrical center position.

Siedle Group

Output characteristics single channel (code 6 _ _)

Position marker examples

Output characteristics redundant (code 7 / 8 _ _)

Connection assignment

One-channel versions			
Signal	Lead wires	Cable	M12
Supply voltage	Red	Green	1
GND	Black	Braun	3
Signal output	Blue	White	2
Shield	-	Shield (if existing)	Shield
not assigned	-	Yellow	4
Multi-channel versions	Lead wires	Cable	M12
Signal	Red	Green	1
Supply voltage 1	Black	Braun	3
GND 1	Blue	White	2
Signal output 1	Red/White	-	-
Supply voltage 2	BlackWhite	-	-
GND 2	Blue/White	Yellow	4
Signal output 2	-	Shield	Shield
Shield	(if existing)		

For position marker options and data, see separate data sheet. Novotechnik-approved magnets are used to achieve specified performance.

Technical Data - Versions for Industrial Applications

Type designations	RFC - 4801 - \qquad - 2 \qquad ratiometric	$\text { RFC - } 4801$ voltage	RFC - 4801-___-12 current		
Mechanical Data					
Dimensions	see dimension drawing				
Mounting	with 2 M4 screws (included)				
Maximum torque of mounting screws	250			Ncm	
Mechanical travel	360 continuous			。	
Maximum operational speed	unlimited				
Weight	ca. 50			g	
Electrical Data					
Supply voltage Ub	5 (4.5 ... 5.5)	24 (18... 30)	24 (18 ... 30)	VDC	
Current consumption (w/o load)	typical 15 (typ. 8 on request) per channel			mA	
Reverse voltage	yes, supply lines	yes	yes		
Short circuit protection	yes (vs. GND and Ub)				
Measuring range	$0 \ldots 30$ up to $0 . . .360$, in 10° steps			-	
Number of channels	1/2	1	1		
Update rate	typ. 5			kHz	
Resolution	12			bit	
Repeatability	0.1			。	
Hysteresis	< 0.1			-	
Independent linearity	≤ 0.5			$\pm \% \mathrm{FS}$	
Output signal	ratiometric to supply voltage (Ub) $\begin{aligned} & 0.25 \ldots 4.75 \mathrm{~V} \\ & 0.5 \ldots 4.5 \mathrm{~V} \\ & (\mathrm{load}>1 \mathrm{k} \Omega) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \ldots 10 \mathrm{~V} \\ & (\mathrm{load}>10 \mathrm{k} \Omega) \end{aligned}$	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \\ & (\mathrm{load} \leq 500 \Omega) \end{aligned}$		
Temperature error at angular range 30 up to 170°	± 0.825	± 1.24	± 1.24	\% FS	
Temperature error at angular range 180 up to 360°	± 0.41	± 0.66	± 0.66	\% FS	
Insulation resistance (500 VDC)	≥ 10			$\mathrm{M} \Omega$	
Cross-section cable	AWG 26, 0.14			mm^{2}	
Environmental Data					
Temperature range	$-40 \ldots+125$	$-40 \ldots+125$	-40...+105	${ }^{\circ} \mathrm{C}$	
			$-40 \ldots+125$, if $\mathrm{Ub} \leq 28 \mathrm{~V}$	${ }^{\circ} \mathrm{C}$	
	generally -25... 85 with M12 connector			${ }^{\circ} \mathrm{C}$	
Vibration (IEC 60068-2-6)				Hz	
	$A \max =0.75$			mm	
	$\mathrm{amax}=20$				
Shock (IEC 60068-2-27)	50 (6 ms)			g	
Life	mechanically unlimited				
MTTF	$290 \text { (single) }$		98	111	years years
	288 (per channel) partly redundant				
Functional Safety	When using our products in safety-related systems, please contact us				
Protection class (DIN EN 60529)	IP67 / IP6k9k (IP67 with M12 connector)				
EMC compatibility	EN 61000-4-2 electrostatic discharges (ESD) 4kV, 8kV				
	EN 61000-4-3 electromagnetic fields $10 \mathrm{~V} / \mathrm{m}$				
	EN 61000-4-4 electrical fast transients (burst) 1 kV				
	EN 61000-4-6 conducted disturbances, induced by RF fields $10 \mathrm{~V} / \mathrm{m}$ eff.				
	EN 61000-4-8 power frequency magnetic fields 3A/m				
	EN 55011/EN 55022/A1 radiated disturbances class B				

Ordering specifications
Versions for Industrial Applications

Preferred types printed in bold:

- reduced delivery time for up to 25 pcs
- best low volume pricing

Oprating voltage
 1: Ub $=24 \mathrm{~V}(18 . . .30 \mathrm{~V})$
 2: $\mathrm{Ub}=5 \mathrm{~V}(4.5 \ldots 5.5 \mathrm{~V})$

Output signal Ub $=24 \mathrm{~V}$
1: 0.1 ... 10 V (only one-channel)
2: 4 ... 20 mA (only one-channel)
Output signal Ub $=5 \mathrm{~V}$
1: 0.25 ... 4.75 V ratiometric to supply voltage
2: 0.5 ... 4.5 V ratiometric to

Output characteristics
1: rising CW
2: rising CCW
3: crossed output channel 1 rising CW (partly redundant)
Electrical connections
201: round cable 4-pol., 0.5 m shielded
202: round cable 4-pol., 1 m shielded 206: round cable 4-pol., 3 m shielded 210: round cable 4-pol., 5 m shielded 220: round cable 4-pol., 10 m shielded 501: M12 connector with round cable, length $=0.21 \mathrm{~m}$, shielded Cable versions and assembled connectors on request

Mechanical version
4801: elongated holes for mounting and adjustment 4802: round mounting holes

Lateral magnet offset

Generally a lateral offset between the sensor and the position marker produces an additional linearity error. This is dependent upon the magnitude of the radial offset and the magnetic field strength of the selected magnet or magnetic marker
Working distance A / magnet constant Z-RFC-P07: A = $0 \ldots 1.5 \mathrm{~mm} /$ magnet constant $=1.85^{\circ} / \mathrm{mm} 2 / \mathrm{max}$. radial offset: $\pm 1,5 \mathrm{~mm}$ Z-RFC-P08: A $=0 \ldots 4 \mathrm{~mm} /$ magnet constant $=0.8 \% / \mathrm{mm} 2 / \mathrm{max}$. radial offset: $\pm 3 \mathrm{~mm}$
Calculation linearity error The maximum additional linearity error caused
by lateral offset between the sensor and the position marker can be approximated as: Error [${ }^{\circ}$] = magnet constant $\times(\text { offset }[m m])^{2}$ Example: Z-RFC-P02: magnet constant $=0.8 \% / \mathrm{mm}^{2}$; offset $=0.5 \mathrm{~mm}$ Error $\left[{ }^{\circ}\right]=0.8{ }^{\circ} / \mathrm{mm}^{2} \times(0.5 \mathrm{~mm})^{2}=0.2$

Technical Data - Versions for Mobile Applications

These versions are optimzed for the high requirements in mobile applications.

Ordering specifications Versions for Mobile Applications

Preferred types printed in bold:

- reduced delivery time for up to 25 pcs
- best low volume pricing

Operating voltage Ub $\begin{aligned} & \text { 2: } \mathrm{Ub}=5 \mathrm{~V}(4.5 \ldots 5.5 \mathrm{~V}) \\ & \text { 3: } \mathrm{Ub}=12 / 24 \mathrm{~V}(9.0 \ldots 34.0 \mathrm{~V}) \end{aligned}$ Output signal Ub $=5 \mathrm{~V}$ 1: 0.25 ... 4.75 V ratiometric to supply 2: $0.5 \ldots 4.5 \mathrm{~V}$ ratiometric to Ub Output signal Ub $=12 / 24 \mathrm{~V}$ 2: 4 ... 20 mA (only single-channel) 4: $0.5 \ldots 4.5 \mathrm{~V}$ 5: $0.25 \ldots 4.75 \mathrm{~V}$ Output characteristics 1: rising cw 2: rising ccw 3: crossed output channel 1 rising cw (partly redundant) 4: crossed output channel 1 rising cw (fully redundant) Other characteristics on request						

251: round cable 4-pol., 0.5 m unshielded, one-channel. partlly redundant 252: round cable 4-pol., 1 m unshielded, one-channel, partly redundant 256: round cable 4-pol., 3 m unshielded, one-channel, partly redundant 401: lead wires $3 \times 0.5 \mathrm{~m}\left(0.5 \mathrm{~mm}^{2}\right)$, single
411: lead wires $4 \times 0.5 \mathrm{~mm}\left(0.5 \mathrm{~mm}^{2}\right)$, partly redundant
421: lead wires $6 \times 0.5 \mathrm{~m}\left(0.5 \mathrm{~mm}^{2}\right)$, fully redundant (only $\left.\mathrm{Ub}=5 \mathrm{~V}\right)$ 551: M12 connector with round cable, length $=0.21 \mathrm{~m}$, unshielded version, one-channel and partly redundant
Cable versions and assembled connectors on request

R F

Number of channels
6: single output: three wires, one output
7: partly redundant: four wires, two outputs
8: fully redundant: six wires (two power, two ground), two outputs (only at Ub $=5 \mathrm{~V}$)

Mechanical version
4801: elongated holes for moluntig and adjustment 4802: round mounting holes

Required accessories

Position marker Z-RFC-P01, P/N 005660;
Position marker Z-RFC-P02, P/N 005661
(See position marker datasheet for working distances and other information)

Recommended accessories

Mating connector M12x1, EEM 33-88, 90 degree angle, IP67, P/N 005633:

Cable sets with mating
connector M12x1, IP67:
cable length 2 m , EEM 33-32, P/N 005600;
cable length 5 m , EEM 33-62, P/N 005609; cable length 10 m, EEM 33-97, P/N 005650.
MAP process control indicator with display.

