


# INDUSTRIAL DRIVE SYSTEMS



**ACTIVE CLUTCH LINE** 

Operating Instructions 86 011..E00

Electromagnetic single-face clutch

Types: 86 01103E00 86 01104E00 86 01106E00

86 01107E00 86 01109E00 86 01111E00

86 01114E00 86 01117E00 86 01121E00





## **Contents**

| 1.    | General                                                                                                         | 3  |
|-------|-----------------------------------------------------------------------------------------------------------------|----|
| 1.1   | Introduction                                                                                                    | 3  |
| 1.2   | Standards and directives                                                                                        | 3  |
| 1.3   | Declaration of Incorporation (in accordance with Annex II, part 1, Section B of Machinery Directive 2006/42/EC) | 3  |
| 1.4   | Manufacturer's liability                                                                                        | 4  |
| 2.    | Product description                                                                                             | 4  |
| 2.1   | Operating principle                                                                                             | 4  |
| 2.2   | Clutch design                                                                                                   | 4  |
| 3.    | Installation                                                                                                    | 5  |
| 3.1   | Mechanical installation                                                                                         | 5  |
| 3.2   | Electrical connection and operation                                                                             | g  |
| 3.2.1 | DC power supply                                                                                                 | ç  |
| 3.2.2 | AC power supply                                                                                                 | ç  |
| 3.3   | Electromagnetic compatibility                                                                                   | 12 |
| 3.4   | Set-up and start-up                                                                                             | 15 |
| 4.    | Maintenance                                                                                                     | 16 |
| 4.1   | Checks and service                                                                                              | 16 |
| 4.2   | Spare parts and accessories                                                                                     | 16 |
| 5.    | Condition at delivery                                                                                           | 16 |
| 6.    | Emissions                                                                                                       | 17 |
| 6.1   | Noise                                                                                                           | 17 |
| 6.2   | Heat                                                                                                            | 17 |
| 7.    | Troubleshooting                                                                                                 | 17 |
| 8.    | Safety                                                                                                          | 18 |
| 8.1   | Intended use                                                                                                    | 18 |
| 8.2   | General safety information                                                                                      | 18 |
| 8.2.1 | Set-up                                                                                                          | 18 |
| 8.2.2 | Start-up                                                                                                        | 19 |
| 8.2.3 | Installation                                                                                                    | 19 |
| 8.2.4 | Operation                                                                                                       | 19 |
| 8.2.5 | Maintenance and repair                                                                                          | 20 |
| 8.3   | Warning symbols                                                                                                 | 20 |
| 9.    | Definitions                                                                                                     | 21 |
| 10.   | Technical specifications                                                                                        | 23 |
| 11    | Authorized repair shops for service and maintenance                                                             | 2/ |

Issued by: Kendrion Binder Magnete GmbH

Industrial Drive Systems Replaces the issue dated: -

Translation of original German operating instructions issue dated: 30 December 2009



### General

#### 1.1 Introduction

These operating instructions describe the operating principle and features of the 86 011..E00 series of Kendrion electromagnetic single-face clutches. The safety information provided in this manual must be strictly observed during the set-up of the machine (e.g. motor) and during the start-up, operation and maintenance of the electromagnetic single-face clutch. Should any queries arise with respect to torques, torque variations, installation position, wear, wear reserve, switching work, break-in conditions, release range, ambient conditions and the like, please contact Kendrion and ask for clarification before starting to use the clutch. Kendrion electromagnetic single-face clutches in the 86 011..E00 series are not ready-to-use devices, but are intended to be incorporated into or assembled with other equipment. Consequently, they will be referred to as components in the following sections.

### 1.2 Standards and directives

The state-of-the-art clutches have been designed, built and tested in accordance with the requirements of DIN VDE 0580 concerning electromagnetic devices and components. Being classified as "electromagnetic components", electromagnetic single-face clutches are not subject to the Low Voltage Directive and must not bear a CE mark of conformity. The user is required to employ suitable switching devices and controls to ensure use of the clutches in accordance with EMC Directive 2004/108/EC.

### 1.3 Declaration of Incorporation (in accordance with Annex II, part 1, Section B of Machinery Directive 2006/42/EC)

We hereby declare that the products below comply with the essential health and safety requirements specified in Annex I of Machinery Directive 2006/42/EC:

Annex I General Principles, Annex I Sections 1.1.2, 1.1.3, 1.1.5, 1.3.2, 1.5.1

The partly completed machinery must not be put into service until the final machinery into which it is to be incorporated has been declared in conformity with the provisions of Machinery Directive 2006/42/EC. The relevant technical documentation required for the partly completed machinery has been compiled in accordance with Annex VII, part B of Machinery Directive 2006/42/EC. The manufacturer undertakes to submit an electronic copy of the relevant technical documentation compiled for the partly completed machinery if reasonably requested by national authorities.

Person authorised Dr. Matthias Dannemann Manufacturer: Kendrion Binder Magnete GmbH

to compile the Industrial Drive Systems Kendrion Binder Magnete GmbH

**Industrial Drive Systems** Mönchweilerstr. 1 documentation:

78048 Villingen-Schwenningen Mönchweilerstr. 1

Germany 78048 Villingen-Schwenningen

Germany

Standards and regulations:

Enclosure protection ratings EN 60529

DIN VDE 0580 Electromagnetic devices and components

**Products:** Electromagnetic single-face clutch

86 01103E00 86 01121E00 86 01109E00

86 01104E00 86 01111E00 86 01106E00 86 01114E00 86 01107E00 86 01117E00

Kendrion Binder Magnete GmbH

Industrial Drive Systems Villingen, 30 Dec. 2009 by proxy. ITM Manninaum.

Dr. Matthias Dannemann (Head of Development at IDS)



### 1.4 Manufacturer's liability

The manufacturer will not assume any responsibility for damage caused by failure to use the products in accordance with their intended use or by failure to observe safety information and other instructions provided in this manual. The information in this manual was correct and up-to-date before going to print. The information contained herein shall not entitle users to raise claims with respect to components purchased at an earlier date.

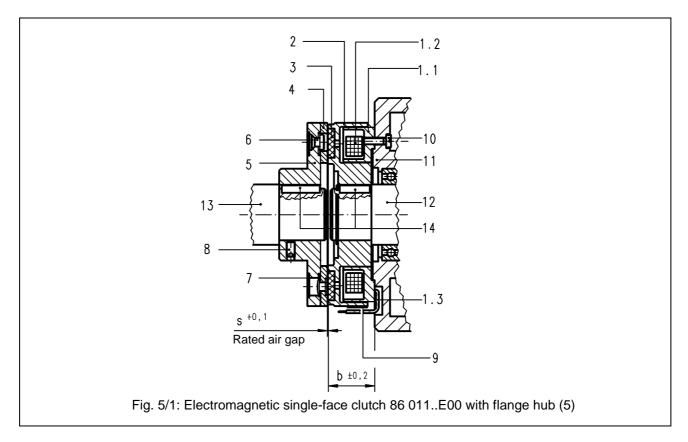
### **Product description**

## 2.1 Operating principle

The electromagnetic single-face clutch for front-end mounting is designed to operate dry. The force generated by an electromagnetic field is utilized for torque transmission. The electromagnetic single-face clutch engages when DC voltage is applied. The clutch releases (opens) in unpowered condition when DC voltage is removed. The zero backlash connection between the armature and flange hub of the clutch (output side) ensures zero backlash transmission of the clutch torque to the output shaft of the machine and reliable disconnection of the single-face clutch with zero residual torque.

### 2.2 Clutch design

The solenoid housing (1.1) of the electromagnetic single-face clutch accommodates the firmly fitted field coil (1.2) with wire leads (1.3) that exit on the rear side of the clutch. The magnet body (2) with the front-side friction lining (3) is firmly connected with the drive shaft (12) of the machine (e.g. motor). The solenoid housing (1.1) is fitted to the front face of the clutch and centred. Sufficient clearance is provided between the rotating magnet body (2) and the solenoid housing (1.1) so that the components will not rub against each other. Depending on the specific clutch design, the armature (4) is mounted to the Kendrion flange hub (5) provided or to a customer-specific flange hub version and thus connected directly to the output side of the machine by means of segment springs (7) and rivet fasteners (6) or socket head cap screws (6)2) (if armature systems without Kendrion flange hub (5) are used). The armature connection thus established is axially movable, torsion-proof and friction-free. This ensures zero residual torque during horizontal or vertical clutch operation. The rated air gap 's' between the armature (4) and magnet body (2) of the electromagnetic single-face clutch is adjusted during clutch mounting (e.g. through mounting tolerances).


The electromagnetic field force generated when DC voltage is applied to the field coil (1.2) of the electromagnetic single-face clutch attracts the armature (4) and pulls it in frictional contact with the friction lining (3) or magnet body (2), causing the clutch to engage. Except for the minimal force exerted by the segment springs (7), the output shaft (13) and drive shaft (12) are not exposed to any other axial force.

### Key to Fig. 5/1:

| 1.1 | Solenoid housing                         | 7  | Segment spring                     |
|-----|------------------------------------------|----|------------------------------------|
| 1.2 | Field coil                               | 8  | Set screw                          |
| 1.3 | Wire leads                               | 9  | Rating plate                       |
| 2   | Magnet body                              | 10 | Mounting screws                    |
| 3   | Friction lining                          | 11 | Fixture for solenoid housing (1.1) |
| 4   | Armature                                 | 12 | Drive shaft                        |
| 5   | Flange hub 1)                            | 13 | Output shaft                       |
| 6   | Rivet fastener 2), socket head cap screw | 14 | Feather key                        |

- 1) Clutches with armature systems equipped with Kendrion flange hub (5) or customer-specific flange hub
- Only in armature systems equipped with Kendrion flange hub (5); rivet fasteners (6) for fixing the segment spring (7) on the armature (4) plus rivet fasteners (6) for fixing the segment spring (7) to the Kendrion flange hub (5). If a customer-specific flange hub version is used, the segment spring (7) is fixed to the flange hub by means of socket head cap screws (6).





#### 3. Installation

#### **Mechanical installation**

After having centred the solenoid housing (1.1) with the fixture (11) of the machine (e.g. motor) over the inside or outside housing diameter, screw the entire assembly (without magnet body (2)) to the rear side of the mounting surface of the fixture (11) provided on the machine (e.g. motor). Use the mounting screws (10) (e.g. socket head cap screws to ISO 1207, property class 5.8) for this purpose. Tighten the mounting screws (10) evenly in several steps. The MA tightening torques (see Table 8/1) specified for the mounting screws (10) and the thread lengths (see Table 8/1) must be strictly observed. After completion of these operations, press the magnet body (2) onto the drive shaft (12) of the machine and secure it axially. The drive shaft (12) features a feather key (14). For uniform loads, the drive shaft should have a i6 tolerance, whereas a k6 tolerance is required for irregular loads. The maximum mismatch (see Table 8/1) between the solenoid housing (1.1) and magnet body (2) must not be exceeded.

### Armature system with Kendrion flange hub (5):

Slide the flange hub (5) with the armature (4) onto the output shaft (13) of the machine and secure it axially (e.g. by means of a set screw (8)). If a flange hub (5) without keyway is used, press the flange hub (5) onto the output shaft (13) without using a set screw (8). Ensure that the output shaft (13) of the machine is dimensioned in such a way that the rated air gap 's' (see Table 23/1 "Technical specifications") is achieved automatically when the flange hub (5) is mounted (e.g. output shaft (13) with contact shoulder for flange hub (5)). If there is no contact shoulder, use a feeler gauge or similar instrument for the axial adjustment of the rated air gap 's' (see Table 23/1 "Technical specifications").



#### Note!

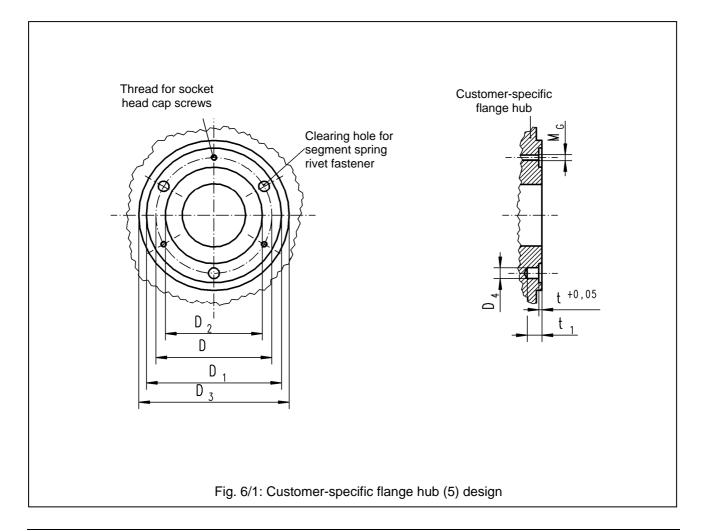
When the flange hub (5) is in contact with a shaft contact shoulder, use shim rings for adjustment, if necessary.



### Armature system without Kendrion flange hub (5) (customer-specific flange hub (5)):

Screw the armature (4) directly to the customer-specific flange hub (5) provided on the machine. Use socket head cap screws (6) to ISO 1207, property class 5.8, for this purpose. For size 07 clutches and over, use socket head cap screws (6) to DIN 7984, property class 8.8. The number of socket head cap screws (6) to be used and the M<sub>A</sub> tightening torques are specified in Table 7/1. Apply Loctite 241 to the socket head cap screws (6). Ensure that the customer-specific flange hub (5) of the machine is dimensioned in such a way that correct operation of the armature system is achieved when the armature (4) has been installed. To this end, the customer-specific flange hub (5) must be provided with an undercut, clearing holes and fastening threads as shown in Fig. 6/1. The geometrical dimensions of the customer-specific flange hub (5) are specified in Table 7/1. Ensure that the output shaft (13) of the machine is dimensioned in such a way that the rated air gap 's' (see Table 23/1 "Technical specifications") is achieved automatically when the customerspecific flange hub (5) is mounted (e.g. output shaft (13) with contact shoulder for flange hub (5)). If there is no contact shoulder, use a feeler gauge or similar instrument for the axial adjustment of the rated air gap 's' (see Table 23/1 "Technical specifications").




#### Note!

When the flange hub (5) is in contact with a shaft contact shoulder, use shim rings for adjustment, if necessary.



#### Note!

If an armature system without Kendrion flange hub (5) is used, make sure to apply Loctite 241 to the socket head cap screws (6) used to fix the armature (4). The depth of the undercut provided for the segment springs (7) must be strictly observed to ensure that the return force required by the segment springs (7) is achieved.





|                                                               |               |        |        |        |        | Size   |        |        |        |        |
|---------------------------------------------------------------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                                                               |               | 03     | 04     | 06     | 07     | 09     | 11     | 14     | 17     | 21     |
| Depth t <sup>+0.05</sup> of undercut                          | [mm]          | 0.75   | 1.3    | 1      | 1.2    | 1.3    | 1.6    | 2.3    | 2.5    | 2.5    |
| Outside diameter D <sub>1</sub> of undercut                   | [mm]          | 26     | 37     | 54     | 68     | 88     | 108    | 136    | 161    | 186    |
| Inside diameter D <sub>2</sub> of undercut                    | [mm]          | 11     | 16     | 35     | 46     | 60     | 78     | 98     | 104    | 134    |
| Min. diameter D <sub>3</sub> for armature (4)                 | [mm]          | 28     | 39.5   | 56     | 70     | 90     | 110    | 140    | 170    | 202    |
| Depth t <sub>1</sub> of clearing hole for rivet fastener (6)  | [mm]          | 2.2    | 2.2    | 2.8    | 2.8    | 4      | 5      | 6      | 6      | 7      |
| Diameter D <sub>4</sub> of clearing he for rivet fastener (6) | ole<br>[mm]   | 5      | 7      | 7      | 8.5    | 10.5   | 12     | 16     | 16     | 18     |
| Number of clearing holes for rivet fastener (6)               |               | 2x180° | 2x180° | 3x120° |
| Pitch circle diameter D                                       | [mm]          | 19.5   | 29     | 46     | 60     | 76     | 95     | 120    | 135    | 158    |
| Thread of socket head cap screws (6) M <sub>G</sub>           |               | M2     | МЗ     | M3     | M4     | M5     | M6     | M8     | M8     | M10    |
| Number of socket head cap screws (6)                          |               | 2      | 2      | 3      | 3      | 3      | 3      | 3      | 3      | 3      |
| M <sub>A</sub> tightening torque of so head cap screws (6)    | ocket<br>[Nm] | 0.23   | 0.9    | 0.9    | 3.3    | 6.5    | 11     | 27     | 27     | 53     |

Customer-specific flange hub (5) design specifications for armature systems without Kendrion Table 7/1: flange hub (5): thread size, number of socket head cap screws (6), MA tightening torques of socket head cap screws (6)



#### Note!

The air gap must not be larger or smaller than the rated air gap 's' (see Table 23/1 "Technical specifications"). The assembled components, especially the friction surface, must be free of oil and grease. The axial runout of the mounting surface relative to the drive shaft (12) must be less than 0.1 mm (measuring radius = pitch circle). During clutch installation, all parts must be axially secured and axial bearing play must be eliminated. During installation of the Kendrion or customer-specific flange hub (5) with armature (4), deformation of the segment springs (7) must be avoided.



### Warning!

If a flange hub (5) without keyway is used, the output shaft (13) and flange hub (5) must be fitted together in such a way that reliable transmission of the generated clutch torques is ensured.



#### Attention!

The maximum axial offset between the drive shaft (12) and output shaft (13) must not exceed 0.05 mm. The maximum angular offset must not exceed 10 angular minutes. If greater deviations occur, an additional flexible coupling or compensating coupling will be required.



### Note!

When the magnet body (2) is pressed in place, ensure that the pressure force is not transmitted to the magnet body (2) via the outer pole ring. Any impact of the magnet body (2) must be avoided to prevent potential deformation of the friction surfaces and damage to the machine bearings.



|                                                          |           |      |      |      |      | Size |      |      |      |      |
|----------------------------------------------------------|-----------|------|------|------|------|------|------|------|------|------|
|                                                          |           | 03   | 04   | 06   | 07   | 09   | 11   | 14   | 17   | 21   |
| Max. mismatch                                            | [mm]      | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.08 | 0.08 | 0.08 | 0.08 |
| Thread length                                            | [mm]      | 3    | 3    | 4    | 5    | 5    | 6    | 8    | 8    | 8    |
| Mounting height b±0.2 of magnet body (2)                 | :<br>[mm] | 15   | 17.5 | 19   | 23   | 24.5 | 28   | 33.5 | 42.5 | 43   |
| M <sub>A</sub> tightening torque of mounting screws (10) | [Nm]      | 0.23 | 0.23 | 0.9  | 0.9  | 0.9  | 2    | 4    | 7    | 16   |

Max. mismatch between magnet body (2) and solenoid housing (1.1); mounting height b of Table 8/1: magnet body (2); MA tightening torques; maximum possible thread length of mounting screws (10)



## Attention!

The MA tightening torques specified for the mounting screws (10) (see Table 8/1) and socket head cap screws (6) (see Table 7/1 for customer-specific flange hub (5)) must be strictly observed. Tighten the mounting screws (10) and socket head cap screws (6) evenly in several steps.



### Note!

Magnetic interference fields may affect reliable clutch operation. Consequently, the clutch should always be installed outside the reach of magnetic interference fields.



### 3.2 Electrical connection and operation

The electromagnetic single-face clutch must be connected to a DC power source via the wire leads (1.3). Various rectifier versions are available (see examples in Table 9/1) to allow the clutch to be connected directly to an AC power source. Depending on the clutch size and torque, voltage ripple due to intermittent power supply may cause humming or incorrect operation. Perfect operation must be ensured by the user or system manufacturer by providing suitable electrical controls.

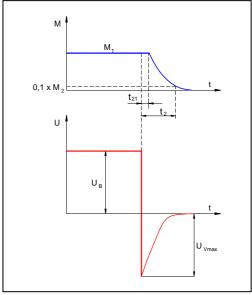


#### Note!

During operation, any contact of the wire leads (1.3) with the rotating armature or other rotating parts must be avoided. Reduce the lead length, if necessary.

| Rectifier series | Rectifier type                                                | Rated input voltage range<br>U₁/VAC (40-60 Hz) | Output voltage<br>U₂/VDC | Max. outpu<br>R-load<br>I/ADC | t current<br>L-load<br>I/ADC |  |  |  |  |  |  |
|------------------|---------------------------------------------------------------|------------------------------------------------|--------------------------|-------------------------------|------------------------------|--|--|--|--|--|--|
| 32 07.03B0.      | bridge                                                        | 0 - 500 (±10%)                                 | U₁ • 0.890               | 1.6                           | 2.0                          |  |  |  |  |  |  |
| 32 07.23B.0      | bridge                                                        | 0 - 400 (±10%)                                 | U₁ • 0.890               | 1.6                           | 2.0                          |  |  |  |  |  |  |
|                  | The relevant rectifier specification sheets must be observed! |                                                |                          |                               |                              |  |  |  |  |  |  |

Table 9/1: Recommended rectifiers for single-phase AC voltage supply


### 3.2.1 DC power supply

The figure to the right shows the voltage curve after the field coil (1.2) has been de-energized.



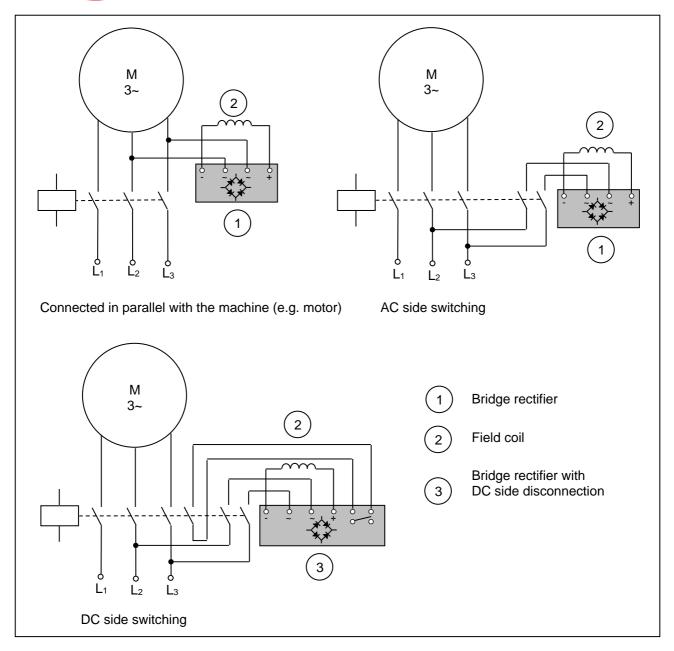
#### Attention!

The peak voltage U<sub>Vmax</sub> during disconnection without protective circuit may reach several thousand volts in the millisecond region. This may cause irreversible damage to the field coil (1.2), switching contacts and electronic components. Sparking will occur on the switch during disconnection. Consequently, a protective circuit must be provided to reduce the current during disconnection and to limit the voltage. The maximum permitted overvoltage during disconnection is 1500 V. If Kendrion rectifiers are used (see Table 9/1), the protective circuit required for the built-in electronic components and field coil (1.2) is included in the rectifier. This does not apply to the external contacts required for DC side switching as there would be no galvanic isolation of the external contact.



 $\mathsf{U}_\mathsf{B}$ operating voltage (coil voltage) Uvmax disconnection voltage




### Attention!

Sensitive electronic components (e.g. logical components) may also be damaged by the lower voltage.

#### 3.2.2 AC power supply

Direct clutch connection to an AC power source is only possible if a rectifier is used. Wiring of the clutch in case of single-phase AC power supply must be performed in the same way as with three-phase voltage. The coupling times vary depending on the switching type (DC side switching or AC side switching).





## **Bridge rectification:**

Bridge rectifiers provide voltage with minimum residual ripple. This means that humming can be avoided even if small size clutches are used. In case of bridge rectification, the U2 coil voltage is lower by factor 0.89 than the rectifier input voltage.

### AC side switching:

The easiest wiring method is to connect the rectifier in parallel with the clutch in the terminal box of the machine (e.g. motor). It must be considered, however, that the motor may act as a generator after AC voltage has been removed and thus extend the coupling time significantly (by factor 5 or over). The disconnection times remain unchanged.

### DC side switching:

In case of DC side clutch switching, an auxiliary contact is provided on the motor contactor, for example. This auxiliary contact is designed to interrupt the power supply on the DC side.





#### Attention!

In case of DC side switching, the clutch must be provided with a protective circuit to avoid overvoltage. Additional protective elements (e.g. varistors, spark arresters, etc.) must be installed to avoid damage such as burns or fusing of contacts.



### Warning!

Work on the clutch must only be carried out by suitably qualified personnel. Make sure that no voltage is applied during clutch connection. The specifications on the rating plate and the information provided in the circuit diagram in the terminal box or in the operating instructions must be strictly observed.



### Warning!

The clutch is a DC operated system. Permanent voltage variations on the power source of the electromagnetic clutch must be limited to +/-10% of the rated voltage.

The following checks must be carried out when connecting the clutch:

- Check that the connecting cables are suitable for the intended use and for the voltage and amperage of the clutch.
- Check that the connecting cables are secured with screws, clamps or other suitable fixtures to avoid interruptions in the power supply.
- Check that the connecting cables are long enough for the intended use and that suitable torsion, strain and shear relief features as well as bending protections are provided.
- Check that the PE conductor (only for protection class I) is connected to the earthing point.
- Check that no foreign matter, dirt or humidity is trapped inside the terminal box.
- Check that unused cable entries and the terminal box are suitably sealed to ensure compliance with the protection class requirements to EN 60529.



#### 3.3 Electromagnetic compatibility

As required by the German Electromagnetic Compatibility Act (EMVG), electromagnetic compatibility is essential to ensure immunity to external electromagnetic fields and conducted interference. Furthermore, the emission of electromagnetic fields and line-conducted interference during clutch operation must be minimized. Since the clutch features depend on the circuitry and operation, a declaration of conformity with the applicable EMC standard can only be furnished for the wiring type, but not for a specific clutch. The electromagnetic single-face clutch type 86 011..E00 is designed for industrial applications to which the following EMC standards apply: Generic Immunity Standard EN 61000-6-2 and Generic Emission Standard EN 61000-6-3 / EN 61000-6-4. Other applications may be subject to different generic standards which must be considered by the manufacturer of the overall system. The requirements in terms of electromagnetic compatibility of devices and components are determined by basic standards derived from the generic standards. Wiring recommendations will be provided in the following sections to ensure compliance with the individual basic standards that are relevant for industrial use and other applications. Please refer to the specification sheets for additional information on electromagnetic compatibility, especially with respect to the recommended electronic rectifiers specified in Section 3.2.

#### Immunity according to EN 61000-4:

#### EN 61000-4-2 Electrostatic discharge:

The electromagnetic single-face clutches in the 86 011..E00 series comply at least with severity level 3 without requiring additional measures. The recommended rectifiers specified in Section 3.2 conform to severity level 3 without additional measures.

#### EN 61000-4-3 Electromagnetic fields:

The clutches comply at least with severity level 3 without requiring additional measures. The recommended rectifiers conform to severity level 3 without additional measures.

#### EN 61000-4-4 Fast transients (burst):

The clutches comply at least with severity level 3 without requiring additional measures. The recommended rectifiers conform to severity level 3.

#### EN 61000-4-5 Surge:

The clutches comply at least with severity level 3 without requiring additional measures. The recommended rectifiers conform to severity level 3.

### EN 61000-4-9 Pulse magnetic fields, EN 61000-4-10 Damped oscillatory magnetic fields:

Since the operating magnetic fields of the electromagnetic clutches are stronger many times over than interference fields, the clutch function will remain unaffected. The clutches comply at least with severity level 4. The recommended rectifiers conform at least to severity level 3.

### EN 61000-4-11 Voltage dips, short interruptions, and short supply voltage variations:

Voltage interruptions:

Clutches that comply with the requirements of DIN VDE 0580 are de-energized after the specified switching times at the latest. The switching time depends on the control and mains conditions (e.g. generator effect of running down motors). Voltage interruptions of shorter duration than the response delay specified by DIN VDE 0580 will not cause any malfunctions. The user is required to take adequate precautions to avoid consequential damage (e.g. slip of an electromagnetically engaged system due to torque drop). The functional reliability of the electromagnetic component and its electronic accessories remains unaffected if the aforementioned consequential damage is avoided.

Voltage dips and short supply voltage variations:

Electromagnetically released systems:

Voltage dips and supply voltage variations to below 60% of the rated voltage and lasting longer than the response delay specified by DIN VDE 0580 may cause the clutch to be de-energized temporarily. Consequential damage as described under a) above must be avoided by the user by taking adequate precautions.

Electromagnetically engaged systems:

Voltage dips and supply voltage variations to below the minimum tolerance threshold will cause torque reductions. The user is required to take adequate precautions to avoid consequential damage.



### Radio interference suppression in accordance with EN 55011:

The clutches and the recommended electronic rectifiers are classified as Group 1 equipment in accordance with EN 55011. As far as the emissions from this equipment are concerned, one distinguishes between field guided radiated interference and line-conducted interference.

#### Radiated interference:

When operated with DC voltage or rectified 50/60 Hz AC voltage, all clutches comply with the limit values applicable to Class B equipment.

#### Conducted interference:

When connected to a DC power source, the electromagnetic clutches meet the limit values applicable to Class A equipment. If the clutches are connected to a 50/60 Hz AC power source and equipped with electronic rectifiers or other electronic controls, interference suppression measures as shown in Fig. 13/1 must be taken to ensure compliance with the limit values applicable to Class A equipment. Interference suppression capacitors should be used which must be dimensioned to suit the connection data of the electromagnetic components and the specific mains conditions. The recommended rectifiers specified in Section 3.2 are CE mark certified in accordance with the EMC Directive. They have built-in interference suppression components and comply at least with the requirements of EN 55011 for Class A equipment, unless otherwise specified in the specification sheet.

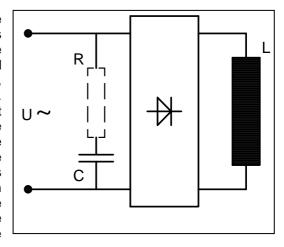



Fig. 13/1

When clutches are used with the specified rectifiers or with other types of rectifiers, the recommended values listed in Table 14/1 should be observed. Interference suppression components should be installed as close as possible to the consumer. Interference caused during switching operations of the electromagnetic component is generally attributable to the inductive load. Where necessary, assemblies designed to limit the disconnection voltage (e.g. anti-parallel diode) or voltage limiting components (e.g. varistors, suppressor diodes, resistance diodes and the like) can be installed. However, such components will inevitably change the switching times of the clutch and increase the generated noise level. The rectifiers specified in Section 3.2 are equipped with free-wheel diodes and/or varistors to limit the disconnection voltage. In case of DC side switching, a varistor rated for the type-specific maximum operating voltage and connected in parallel with the field coil (1.2) limits the peak voltage to the values specified in Table 14/2.

If the clutch is used in connection with other electronic accessories, the user is responsible to ensure compliance with EMC requirements. Compliance with applicable standards concerning the design and operation of components, sub-assemblies or equipment employed shall not relieve the user and manufacturer of the overall system from their obligation to furnish proof of conformity of the overall system with such standards.



| Rectifier series                | Rated input voltage range U <sub>1</sub> /VAC (40-60Hz) | DC at L-load<br>(ADC)  | Capacitor<br>nF (VAC)                                    |
|---------------------------------|---------------------------------------------------------|------------------------|----------------------------------------------------------|
| Bridge rectifier<br>32 07.23B.0 | up to 400 (±10%)                                        | up to 2.0              | no additional interference suppression measures required |
| Bridge rectifier 32 07.03B0.    | up to 230 (±10%)<br>up to 500 (±10%)                    | up to 2.0<br>up to 2.0 | 47/250~<br>100/500~                                      |

Table 14/1

| Max. rectifier operating voltage (VAC) | Recommended disconnection voltage for DC side switching (V) |
|----------------------------------------|-------------------------------------------------------------|
| 250                                    | 700                                                         |
| 440                                    | 1200                                                        |
| 550                                    | 1500                                                        |

Table 14/2



#### 3.4 Set-up and start-up



### Warning!

Functional testing of the clutch must not be performed unless the machine (e.g. motor) has been switched off and secured against accidental or unintentional start-up.

#### The following checks must be carried out:

Check compliance with the specifications provided on the rating plate with respect to the mounting position and protection class. After connection of the clutch, a functional test must be performed to check that the output shaft (13) rotates smoothly. For this purpose, turn the shaft (13) while the clutch and the machine (e.g. motor) are unpowered. After completion of mounting, all necessary covers and guards must be installed.



### Warning!

Before starting the machine (e.g. motor) test run without driven components, the feather key (if used) must be secured in such a way that it cannot be hurled out. The output shaft (13) must not be exposed to load torques. Before the machine is re-started, the clutch must be energized.



### Caution!

The clutch surface temperature may rise to over 100°C. Heat-sensitive parts such as conventional cables or electronic components must not be fixed to or be in contact with these surfaces. If necessary, suitable protections and hand guards must be installed to avoid accidental contact with hot surfaces! If the shaft needs to be turned during set-up operations while the machine (e.g. motor) is switched off, the clutch must be unpowered and disengaged.



### Attention!

High-voltage tests performed during clutch installation within an overall system or during start-up must be carried out in such a way that damage to the built-in electronic accessories is avoided. The limits for highvoltage tests and follow-up tests specified by DIN VDE 0580 must be observed.



### Attention!

Check that the clutch has been connected in accordance with the specifications provided on the rating plate before it is put into operation. Even short-term operation outside the specified supply voltage limits may cause irreversible damage to the clutch or electronic accessories. Such damage may not be apparent immediately. DC side clutch switching without protective circuit as described in Section 3.3 will cause damage to electronic rectifiers, electronic accessories, switching contacts and to the field coil (1.2).



#### **Maintenance**

#### 4.1 Checks and service

The electromagnetic single-face clutch does not require any particular maintenance except that the air gap 's' must be measured at regular intervals. When the maximum air gap s<sub>max</sub> (see Table 23/1 "Technical specifications") between the armature (4) and magnet body (2) of the electromagnetic single-face clutch has been reached, the entire clutch must be replaced by a new one. Follow the instructions in Section 3.1 ("Mechanical installation") to adjust or correct the air gap 's'. (For information on the rated air gap, please refer to Table 23/1 "Technical specifications". If the clutch is not operated for a long period of time, the pole faces may corrode and reduce the torque. A short break-in process (see Table 23/2) will restore correct and reliable clutch operation.



#### Note!

Replace the clutch by a new one after the air gap 's' has been adjusted (corrected) twice.



#### Attention!

The M<sub>A</sub> tightening torques specified for the mounting screws (10) (see Table 8/1) and socket head cap screws (6) (see Table 7/1 for customer-specific flange hub (5)) must be strictly observed. Tighten the mounting screws (10) and socket head cap screws (6) evenly in several steps.



#### Caution!

Depending on its operating condition, engagement of the electromagnetic single-face clutch may no longer be possible when the maximum air gap s<sub>max</sub> (see Table 23/1 "Technical specifications") has been exceeded. This may affect the reliability of the clutch system.



#### Warning!

Whenever inspection and maintenance work is carried out, ensure that

- the machine (e.g. motor) is secured against accidental or unintentional start-up.
- no load torque acts on the shaft.
- the lock provided to prevent accidental start-up of the machine (e.g. motor) is removed after completion of inspection and maintenance work.
- all friction surfaces are free of grease and oil. An oily or greasy friction surface cannot be cleaned.
- no swelling or glazing of the friction lining has occurred.

#### 4.2 Spare parts and accessories

The electromagnetic single-face clutch does not require any maintenance, provided it is used in accordance with its intended use. If defects occur on the clutch or individual components, the entire clutch needs to be replaced. Individual spare parts or accessories are not available for the clutch.

### Condition at delivery

Upon receipt of the shipment, the clutch must be checked for transit damage before storage. The electromagnetic single-face clutch is delivered ready for mounting. The rated air gap 's' (see Table 23/1 "Technical specifications") must be adjusted during clutch installation. After the clutch has been mounted, it requires a break-in process using the break-in parameters specified in Table 23/2.





#### Note!

The coil system of the clutch and the flange hub with armature (if a Kendrion flange hub is used) are factoryadjusted to ensure reliable clutch release (opening). Consequently, individual components cannot be replaced. If the clutch is not installed immediately upon delivery, it must be stored in a dry, dust-free and vibration-proof place.

### **Emissions**

#### 6.1 Noise

The electromagnetic single-face clutch produces switching noise during engagement and release. The noise level is determined by the installation conditions, circuitry (e.g. with overexcitation) and air gap. Depending on the mounting position, operating conditions and state of the friction surfaces, audible vibrations (squealing) may be produced during clutch operation.

#### 6.2 Heat

Clutch operation and gradual heating of the field coil cause the temperature of the solenoid housing and magnet body to increase substantially. Under adverse conditions, the surface temperature may rise to well over 100°C.



#### Caution!

Risk of burns in case of contact with hot surfaces! Suitable covers and hand guards must be installed to provide protection against accidental contact.

### 7. Troubleshooting

| Fault                     | Cause                                                                                  | Corrective actions                                                                        |
|---------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                           | Air gap too large                                                                      | Check the air gap and adjust it, if necessary. Install a new clutch, if required.         |
|                           | No voltage applied to clutch                                                           | Check the electrical connection and correct faults, if found.                             |
| Clutch engagement failure | Voltage applied to field coil too low                                                  | Check the field coil supply voltage and correct faults, if found.                         |
| Tallaro                   | Damaged rectifier                                                                      | Check the rectifier and replace it, if necessary.                                         |
|                           | Damaged field coil                                                                     | Check the resistance of the field coil. Install a new clutch, if necessary.               |
| Delayed clutch            | Air gap too large                                                                      | Check the air gap and adjust it, if necessary. Install a new clutch, if required.         |
| engagement                | Voltage applied to field coil too low                                                  | Check the field coil supply voltage and correct faults, if found.                         |
| Clutch release failure    | Voltage applied to field coil in<br>unpowered condition too high (residual<br>voltage) | Check whether residual voltage is applied to the field coil and correct faults, if found. |
| Cluten release failure    | Armature plate blocked mechanically<br>due to fusing of armature and magnet<br>body    | Separate the armature from the magnet body. Install a new clutch, if necessary.           |
| Delayed clutch release    | Voltage applied to field coil too high                                                 | Check the field coil supply voltage and correct faults, if found.                         |
|                           | Air gap too large                                                                      | Check the air gap and adjust it, if necessary. Install a new clutch, if required.         |
|                           | Clutch operating temperature too high                                                  | Reduce the clutch switching work / switching power. Cool the clutch, if necessary.        |
| Clutch torque too low     | Voltage applied to field coil too low                                                  | Check the field coil supply voltage and correct faults, if found.                         |
|                           | Friction lining projects from pole faces                                               | Install a new clutch, if necessary.                                                       |
|                           | Friction surface thermally overloaded                                                  | Install a new clutch.                                                                     |
|                           | Oily or greasy friction surfaces                                                       | Check the friction surfaces. Install a new clutch, if necessary.                          |

Table 17/1: Possible faults, causes and corrective actions (list not exhaustive)



#### Safety

The clutches described in these operating instructions have been designed and built on the basis of an analysis of hazards and in accordance with the requirements of the applicable harmonized standards and technical specifications. They correspond to the state of the art and provide maximum safety. However, safety hazards can only be avoided if the user of the equipment takes adequate precautions and makes sure that safety instructions are strictly adhered to. It is the duty of the machine owner to plan these measures and to check their implementation.

The machine owner is required to ensure that:

- the clutches are only used in accordance with their intended use (see "Product description" section).
- the clutches are in perfect working order and checked at regular intervals.
- a complete and fully legible copy of these operating instructions is kept available at the place of use of the clutches at all times.
- start-up, maintenance and repair work is only done by authorized and suitably qualified personnel.
- such personnel are kept informed on all relevant occupational safety and environmental protection issues and familiar with these operating instructions and with the safety information contained herein.
- the clutches are not exposed to other strong magnetic fields.

### 8.1 Intended use

The clutches described in these operating instructions are intended to be assembled with machines, in particular electric motors, for use on industrial plant. Operation in potentially explosive or firedamp atmospheres is not allowed. The clutches must be used in accordance with the operating requirements detailed in this manual. The rated power limits specified herein must not be exceeded.

### 8.2 General safety information

Clutches fitted to motors feature hazardous live components and rotating parts and may exhibit hot surfaces. Any work associated with the transport, connection, start-up and periodical maintenance of the clutches must be carried out by authorized and suitably qualified personnel (in accordance with VDE 0105; IEC 364). Failure to observe safety, operating and maintenance instructions may cause serious personal injury and severe damage to the equipment. Whenever special measures are required in accordance with the instructions contained herein, such measures should be agreed with the clutch manufacturer before the machinery into which the clutch is to be incorporated is set up. Should any queries arise with respect to torques, torque variations, installation positions, wear, wear reserve, switching work, break-in conditions, release range, ambient conditions and the like, please contact Kendrion and ask for clarification before using the clutch. Retrofitting or modification work to be carried out on the clutch is subject to the approval from Kendrion. Accident prevention regulations applying to the specific field of application of the clutch must be strictly observed. The clutches described in this manual are not designed for use as "safety components". This means that torque reductions caused by factors beyond the user's control cannot be excluded.

### 8.2.1 Set-up

Requirements in terms of the permitted number of switching operations per hour and the maximum switching work per switching operation specified in the technical specifications must be strictly observed during the setup of machines and plant (jog mode). Failure to observe these instructions may irreversibly affect reliable clutch operation and cause malfunctions. Normal operating conditions are those specified by DIN VDE 0580. The protection rating conforms to EN 60529. In case of deviations, special measures must be taken after prior consultation with the manufacturer. Bear in mind that the armature may freeze to the flange hub if ambient temperatures fall below -5°C or if the clutch remains unpowered for prolonged periods of time. In this case, special precautions must be taken after consultation with the manufacturer.



### 8.2.2 Start-up

The clutches must not be put into operation when:

- power supply cables/wires or connections are damaged.
- the solenoid housing or coil sheath is damaged.
- other defects are suspected.

#### 8.2.3 Installation

The voltage level and voltage type specified on the rating plate must be strictly observed when connecting the clutches described in these operating instructions. Sufficient heat dissipation must be ensured when the clutch is fitted to or incorporated into other equipment. Adequate precautions must be taken to avoid overvoltage during disconnection or voltage peaks. The magnetic field of the products may cause interference outside the clutch or even feedback to the clutch in case of adverse installation conditions. Should you have gueries concerning mounting and fitting conditions, please contact the clutch manufacturer and ask for clarification.

Adequate safety measures (DIN VDE 0848, part 4; DIN 31000/VDE 1000; DIN VDE 0100, part 0420) must be taken by the clutch user to avoid hazards to persons and animals or damage to equipment caused by:

- direct or indirect effects of electromagnetic fields,
- heated components,
- mobile parts.

## 8.2.4 Operation

Ensure that live components such as plug contacts or the field coil are not exposed to water. The clutch cable connections must not be crushed, squeezed or exposed to mechanical loads. Make absolutely sure that the friction surfaces of the friction elements are not contaminated with grease, oil or other fluids to avoid substantial torque reduction. Bear in mind that the original torque cannot be restored even if the friction surfaces are cleaned after contact with fluids. The gradual clutch wear (only with dynamic clutches) must be taken into consideration in the set-up of the machine or overall system. Due to the diverse ambient conditions in which the clutches may be used, always check that the clutch is in perfect working order before start-up. Torque reductions cannot be excluded if the clutch is used for applications where only minimum friction work is required. In such cases, the user should ensure that the clutch occasionally performs sufficient friction work.



#### Note!

The clutch must be operated at an ambient temperature of between -5°C and +35°C and at a maximum relative humidity of 75% (at 20°C ambient temperature).



### Attention!

A maximum 6g continual shock load over a service life of 20,000 operating hours is permitted for the clutch. The armature connection, hub connection and electrical connection are subject to the user's approval. Vibration loads with a maximum excursion of 1.5 mm and a maximum 6g acceleration are permitted within a frequency band of 10 to 2000 Hz.



### Note!

The clutch, and more specifically the armature, is not subject to specific requirements in terms of the balance quality grade to DIN ISO 1940-1. Consequently, the required balance quality must be agreed between the manufacturer and customer in each individual case.





#### Note!

The maximum air gap s<sub>max</sub> (see Table 23/1 "Technical specifications") must not be exceeded throughout the entire clutch service life. (Please refer to Section 4 "Maintenance" for details.)



#### Note!

The M<sub>2</sub> rated torque (see Table 23/1 "Technical specifications") is not fully reached until the break-in process has been completed (burnishing of friction surfaces). The break-in parameters are specified in Table 23/2. Before the clutch is first used, the break-in process must be conducted by the product owner.

### 8.2.5 Maintenance and repair

Repair work must only be carried out by qualified personnel (definition to IEC 364). Failure to perform repairs according to requirements may cause serious personal injury or equipment damage. Make sure that no voltage is applied to the clutches when carrying out maintenance work.

### 8.3 Warning symbols

| Personal      | Personal injury or equipment damage |                                              |                                         |  |  |  |  |  |  |
|---------------|-------------------------------------|----------------------------------------------|-----------------------------------------|--|--|--|--|--|--|
| Symbol /      | Term                                | Warns against                                | Potential risks and hazards             |  |  |  |  |  |  |
|               | Danger                              | imminent personal injury                     | fatal accidents or serious injury       |  |  |  |  |  |  |
|               | Warning                             | potential risk of serious<br>personal injury | fatal accidents or serious injury       |  |  |  |  |  |  |
|               | Caution                             | potential risk of personal injury            | minor injury                            |  |  |  |  |  |  |
|               | Attention                           | potential risk of equipment damage           | damage to components or other equipment |  |  |  |  |  |  |
| Informati     | on                                  |                                              |                                         |  |  |  |  |  |  |
| Symbol / Term |                                     | Provides information on                      |                                         |  |  |  |  |  |  |
| i             | Note                                | the safe use and operation of the product    |                                         |  |  |  |  |  |  |



#### **Definitions**

(based on: DIN VDE 0580 July 2000, not exhaustive)

Switching torque M<sub>1</sub> torque acting on the shaft during brake or clutch slip

Rated torque M<sub>2</sub> switching torque specified by the manufacturer to identify the clutch.

> The rated torque M2 is the mean value of at least 3 measurements of the maximum switching torque M<sub>1</sub> after completion of the transient

response.

Transmissible torque M<sub>4</sub> highest torque that can be applied to the engaged brake or clutch

without causing the brake/clutch to slip

Residual torque M<sub>5</sub> torque transmitted by the released brake or clutch

Load torque M<sub>6</sub> torque acting on the drive of the engaged brake or clutch; determined

by the power requirement of the driven machine at a given speed

Switching work W heat generated by friction inside the brake or clutch as a result of the

switching operation

Maximum switching work W<sub>max</sub> maximum switching work to which the brake or clutch may be

exposed

Switching power P switching work converted into heat per unit of time

Maximum switching power P<sub>max</sub> maximum permitted switching work converted into heat per unit of

time

Coil ON time t<sub>5</sub> time between power on and power off Coil OFF time t<sub>6</sub> time between power off and power on

Total cycle time t<sub>7</sub> coil ON time plus coil OFF time

**Duty cycle** percentage relationship of coil ON time to total cycle time

Switching operation one complete switching on and off operation Switching frequency Z number of regular switching operations per hour

time between power off (releasing systems) or power on (engaging Response delay during coupling t<sub>11</sub>

systems) and beginning of torque increase

Rise time t<sub>12</sub> time it takes to reach 90% of the M2 rated torque from the beginning

of the torque increase

Coupling time t<sub>1</sub> response delay t<sub>11</sub> plus rise time t<sub>12</sub>

Response delay during disconnection t21 time between power on (releasing systems) or power off (engaging

systems) and beginning of torque decrease

Fall time too time it takes for the torque from the beginning of the torque decrease

to fall to 10% of the M2 rated torque

Disconnection time t2 response delay t21 plus fall time t22

Slip time t<sub>3</sub> time from the beginning of the torque increase up to the end of the

braking process (brakes) or until the synchronization torque M<sub>3</sub> has

been reached (clutches)

response delay t<sub>11</sub> plus slip time t<sub>3</sub> (braking or acceleration time) Making time t4

condition at which the steady-state temperature is reached. The Operating condition at operating temperature

operating temperature corresponds to the overtemperature according to DIN VDE 0580 plus the ambient temperature. Unless otherwise

specified, the ambient temperature is 35°C.

Overtemperature  $\Delta \vartheta_{31}$ difference between the temperature of the electromagnetic device or

a part thereof and the ambient temperature

in accordance with DIN VDE 0580. The individual insulating materials Limit temperatures of coil insulating materials

are classified by insulation classes to DIN IEC 85.

Rated voltage U<sub>N</sub> supply voltage specified by the manufacturer for voltage windings to

identify the device or component



Rated current IB

amperage determined by the manufacturer for the specified operating conditions. Unless otherwise specified, the rated current refers to the rated voltage, 20°C winding temperature and to the rated frequency for a given operating mode of voltage windings.

Rated power P<sub>N</sub>

Rated power at 20°C winding temperature PB

power value to identify the device or component

determined from the rated current of voltage-controlled devices and components and the R<sub>20</sub> resistance at 20°C winding temperature



# 10. Technical specifications

Product built and tested to DIN VDE 0580

|                                                                                           |                      | 03    | 04    | 06    | 07   | Size<br>09 | 11   | 14   | 17   | 21   |
|-------------------------------------------------------------------------------------------|----------------------|-------|-------|-------|------|------------|------|------|------|------|
| Rated torque M <sub>2</sub>                                                               | [Nm]                 | 0.2   | 1     | 2.2   | 5    | 11         | 21   | 60   | 80   | 150  |
| Max. speed n <sub>max</sub>                                                               | [rpm]                | 16000 | 12000 | 10000 | 8000 | 6000       | 4800 | 3600 | 3000 | 2500 |
| Max. switching power P <sub>max</sub>                                                     | [kJ/h]               | 65    | 100   | 160   | 250  | 350        | 500  | 700  | 1000 | 1300 |
| $\begin{array}{l} \text{Max. switching work } W_{\text{max}} \\ \text{(Z=1)} \end{array}$ | [kJ]                 | 0.9   | 1.6   | 4.5   | 6    | 11         | 30   | 53   | 80   | 110  |
| Rated power P <sub>N</sub>                                                                | [W]                  | 6     | 8     | 10    | 12   | 17         | 22   | 35   | 40   | 45   |
| Coupling time t <sub>1</sub>                                                              | [ms]                 | 13    | 15    | 15    | 25   | 45         | 70   | 110  | 110  | 150  |
| Disconnection time t <sub>2</sub>                                                         | [ms]                 | 12    | 16    | 18    | 25   | 38         | 40   | 65   | 70   | 90   |
| Moment of inertia J – armature (without flange hub)                                       | [kgcm <sup>2</sup> ] | 0.01  | 0.05  | 0.22  | 0.65 | 2.1        | 5.7  | 20   | 48   | 97   |
| Moment of inertia J – magnet body                                                         | [kgcm <sup>2</sup> ] | 0.06  | 0.17  | 0.55  | 2.45 | 7          | 20   | 36   | 85   | 217  |
| Weight (without flange hub) m                                                             | [kg]                 | 0.06  | 0.15  | 0.35  | 0.65 | 1.15       | 2    | 4    | 7.4  | 11   |
| Rated air gap s <sup>+0.1</sup>                                                           | [mm]                 | 0.2   | 0.2   | 0.2   | 0.2  | 0.3        | 0.3  | 0.3  | 0.3  | 0.4  |
| Max. air gap s <sub>max</sub> (at 70% of rated current)                                   | [mm]                 | 0.45  | 0.5   | 0.5   | 0.5  | 0.75       | 0.75 | 0.75 | 0.75 | 1.0  |
| Duty cycle                                                                                | [%]                  |       |       |       |      | 100        |      |      |      |      |
| Standard rated voltage                                                                    | [VDC]                |       |       |       |      | 24         |      |      |      |      |
| Insulation class                                                                          | F                    |       |       |       |      |            |      |      |      |      |
| Pollution degree                                                                          | 2                    |       |       |       |      |            |      |      |      |      |
| Protection                                                                                |                      | IP00  |       |       |      |            |      |      |      |      |
| Clutch type                                                                               |                      |       |       |       | dyr  | namic clu  | tch  |      |      |      |

Table 23/1: Technical specifications

|                                    |       |                 |              |         |                | Size           |         |                |                |         |
|------------------------------------|-------|-----------------|--------------|---------|----------------|----------------|---------|----------------|----------------|---------|
|                                    |       | 03              | 04           | 06      | 07             | 09             | 11      | 14             | 17             | 21      |
| Speed n                            | [rpm] | 1000            | 1000         | 1000    | 1000           | 1000           | 1000    | 1000           | 1000           | 1000    |
| Coil ON time t <sub>5</sub>        | [s]   | 1               | 1            | 1       | 1              | 1              | 1       | 1              | 1              | 1       |
| Coil OFF time t <sub>6</sub>       | [s]   | 0.8             | 0.8          | 1.5     | 2.5            | 5              | 6       | 17             | 17             | 21      |
| Break-in period t <sub>total</sub> | [min] | approx.<br>0.75 | approx. 0.75 | approx. | approx.<br>1.5 | approx.<br>2.5 | approx. | approx.<br>7.5 | approx.<br>7.5 | approx. |

Table 23/2: Break-in process parameters for the electromagnetic single-face clutch



### Explanations on the technical specifications:

 $W_{\text{max}}$  (maximum switching work) is the switching work that must not be exceeded during clutch operations at max. 1000 rpm. Clutch operations at speeds greater than 1000 rpm substantially reduce the maximum permitted switching work per switching operation. Such operation must be agreed with the manufacturer. The maximum switching power P<sub>max</sub> is the switching work W that can be converted by the clutch per hour. In case of applications where the number of switching operations per hour is Z>1, Fig. 24/1 applies. The  $P_{max}$  and  $W_{max}$  values are approximate values. The specified times apply to the following conditions: DC side clutch switching, operating temperature, rated voltage, and rated air gap. All values are mean values that are subject to variation. In case of AC side clutch switching, the disconnection time t2 is substantially longer. The specified rated torques M<sub>2</sub> characterize the torque level. Depending on the application the clutch is used for, the switching torque M<sub>1</sub> and the transmissible torque M<sub>4</sub> may differ from the specified M<sub>2</sub> values. The switching torque M<sub>1</sub> depends on the speed (rpm). If the friction surfaces are contaminated with oil, grease or dirt, the transmissible torque M<sub>4</sub> and the switching torque M<sub>1</sub> may drop. The technical specifications apply after the break-in process has been completed (see Table 23/2).

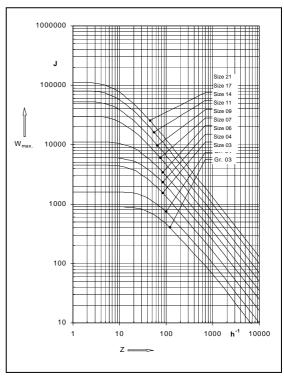



Fig. 24/1: Max. switching work W<sub>max</sub> per switching operation as a function of the number of switching operations per hour Z (values based on n=1000 rpm)

A current level corresponding to 70% of the rated current is reached when the electromagnetic single-face clutch is operated at rated voltage and at a coil temperature of 130°C.

The required operating conditions specified in DIN VDE 0580 and the information provided in the ACTIVE CLUTCH LINE specification sheet and offer drawing for the specific clutch types must be observed during operation of the electromagnetic single-face clutch!

### Specifications subject to change without notice!

#### 11. Authorized repair shops for service and maintenance

#### Steinlen

Elektromaschinenbau GmbH

Ehlbeek 21 30938 Burgwedel Germany Tel. +49 (0)5139 8070-0

Fax +49 (0)5139 8070-60

**Elmatec** 

Straub + Müller GmbH Benzstr. 2 78080 Dauchingen Germany

Tel. +49 (0)7720 957171 Fax +49 (0)7720 957173

## Klebs + Hartmann

August-Heller-Str. 1-3 67065 Ludwigshafen-Mundenheim Germany Tel. +49 (0)621 57900-0 Fax +49 (0)621 57900-95



## INDUSTRIAL DRIVE SYSTEMS

Kendrion (Villingen) GmbH Industrial Drive Systems Wilhelm-Binder-Str. 4-6 78048 Villingen-Schwenningen Germany

Tel. +49 (0)7721 877-1417 Fax +49 (0)7721 877-1462 sales-ids@kendrion.com www.kendrion.com