

Aquaporin Inside™ HFFO 2 - Standard Test Setup

MODULE SPECIFICATIONS	
Aquaporin Inside [™] coating:	On lumen side of fiber
Active area (lumen side/shell side):	2.3 m ²
Inner diameter of fibers:	195 μm
Module dimensions:	300 mm long, 70 mm in diameter

Schematic description of the applied single-pass testing method used in testing of 2.3 m² modules; FV - flow meter, P - manometer, C - conductivity meter, TMP - transmembrane pressure.

Feed out-flow from the module was calculated and subtracted from the feed in-flow the module in order to calculate flux through the membrane according to eq. 1.

$$J_{w} = \frac{\dot{Q}_{Feed} - \dot{Q}_{Concentrate}}{A} \tag{1}$$

$$where:$$

$$J_{w} \qquad \text{is water flux (L/m}^{2}h)$$

$$\dot{Q}_{Feed} \qquad \text{is flow rate of feed (L/h)}$$

$$\dot{Q}_{Concentrate} \qquad \text{is flow rate of concentrate (L/h)}$$

$$A \qquad \text{is membrane area (m}^{2})$$

Conductivity of the concentrated feed solution was measured in order to calculate reverse salt flux according to the eq. 2.

$$J_s = \frac{\dot{Q}_{Concentrate}}{A} \kappa \cdot B$$
 (2)

where:

 J_s is reverse salt flux (L/m²h)

 $\dot{Q}_{Concentrate}$ is flow rate of concentrate (L/h)

 A is membrane area (m²)

 κ is conductivity (μ S/cm)

 K is proportionality coefficient (0,5362 μ S/cm per 1 mg/L of NaCl)