DISCAL® deaerator

551 series

Function

Deaerators are used to continuously remove the air contained in the hydraulic circuits of heating and cooling systems. The air discharge capacity of these devices is very high. They are capable of automatically removing all the air present in the system down to micro-bubble level, with very low head losses.

The circulation of fully deaerated water enables the equipment to operate under optimum conditions, free from any noise, corrosion, localised overheating or mechanical damage.

The threaded connection product is available in versions for installation to horizontal or vertical pipes.

Flanged and weld-end DISCAL[®] deaerators are supplied complete with hot pre-formed shell insulation to ensure perfect thermal insulation when used in both hot and chilled water systems.

For threaded model with drain, size 3/4" to 2", an optional insulation is available.

Product range

 551 series
 DISCAL® deaerator for horizontal pipes, compact version
 size DN 20 (3/4")

 551 series
 DISCAL® deaerator for horizontal pipes with olive connections, compact version
 size DN 20 (0 (22)

 551 series
 DISCAL® deaerator for horizontal pipes with drain
 size DN 20 (3/4"); DN 25 (1"); DN 32 (1 1/4"); DN 40 (1 1/2"); DN 50 (2")

 551 series
 DISCAL® deaerator for vertical pipes, compact version
 size DN 20 (3/4"); DN 25 (1")

 551 series
 DISCAL® deaerator for vertical pipes, compact version
 size DN 20 (3/4"); DN 25 (1")

 551 series
 DISCAL® deaerator for vertical pipes with olive connections, compact version
 size DN 20 (3/4"); DN 26 (1")

 551 series
 DISCAL® deaerator for horizontal pipes with flanged connections and pre-formed insulation with drain
 size DN 20 (0 22)

 551 series
 DISCAL® deaerator for horizontal pipes with flanged connections and floor supports
 size DN 20 (D 21)

 551 series
 DISCAL® deaerator for horizontal pipes with weld ends and pre-formed insulation with drain
 size DN 200–DN 300

 551 series
 DISCAL® deaerator for horizontal pipes with weld ends and pre-formed insulation with drain
 size DN 50–DN 150

Technical specifications

series	551 threaded	551 flanged and weld ends		
Materials:				
Body:	brass EN 12165 CW617N	epoxy resin coated steel		
Internal element:	PA66G30; stainless steel (compact version)	stainless steel		
Float:	PP	PP		
Float guide:	brass EN 12164 CW614N	brass EN 12164 CW614N		
Stem:	brass EN 12164 CW614N	brass EN 12164 CW614N		
Float lever:	stainless steel EN 10270-3 (AISI 302)	stainless steel EN 10270-3 (AISI 302)		
Spring:	stainless steel EN 10270-3 (AISI 302)	stainless steel EN 10270-3 (AISI 302)		
Hydraulic seals:	EPDM	EPDM		
Drain cock:	-	brass EN 12165 CW617N, chrome plated		
Performance:				
Medium:	water, non-hazardous glycol solutions excluded	water, non-hazardous glycol solutions excluded		
	from the guidelines of directive 67/548/EC	from the guidelines of directive 67/548/EC		
Max. percentage of glycol:	50%	50%		
Max. working pressure:	10 bar	10 bar		
Max. discharge pressure:	10 bar	10 bar		
Working temperature range:	0–110°C	0–110°C		
Connections:				
Main:	3/4", 1", 1 1/4", 1 1/2", 2" F	DN 50–DN 150, PN 16		
	with compression ends for \emptyset 22 mm copper pipe	DN 200–DN 300, PN 10		
		to be coupled with EN 1092-1 counterflanges		
Droho holdori		DN 50-DN 150 weld ends		
Probe holder:		DN 200-DN 300, inlet/outlet 1/2" F		
Drain:	1/2" F (with plug)	DN 50–DN 150, 1" M (with plug);		
	., (DN 200–DN 300, 2" F		

Technical specification of insulation for threaded model (code 551005-6-7-8-9)

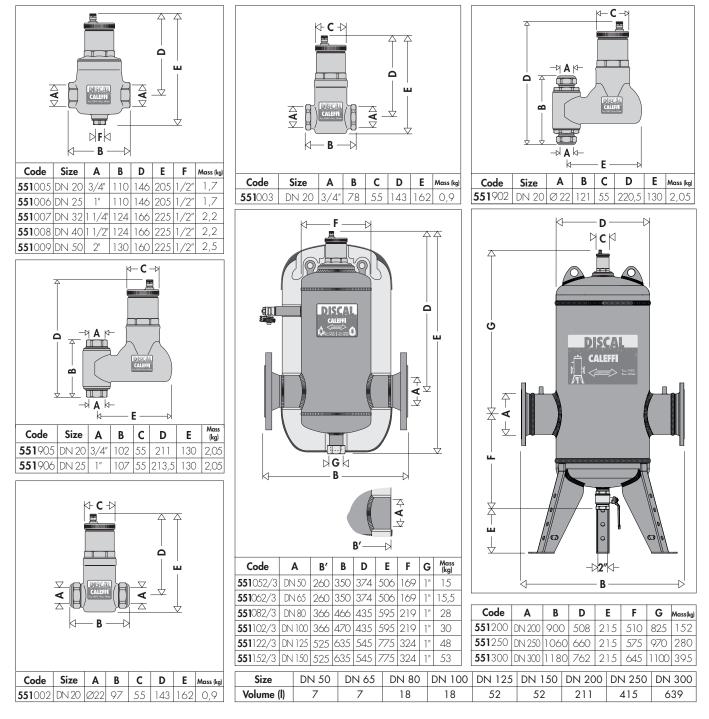
Material:	closed cell exp	banded PE-X
Thickness:		10 mm
Density: ir	nner part: 30 kg/m³; outer p	
Thermal conductivity (ISO 2	2581): - a 0°C: 0,	038 W/(m·K)
	- a 40°C: 0,	045 W/(m·K)
Coefficient of resistance to	water vapour (DIN 52615):	> 1.300
Working temperature range		0–110°C
Reaction to fire (DIN 4102):		class B2

Technical specification of insulation for flanged models from DN 50 to DN 100

Inner part

rigid closed cell expand	ed polyurethane foam
	60 mm
	45 kg/m³
/ (ISO 2581):	0,023 W/(m·K)
e range:	0-105°C
	rigid closed cell expand / (ISO 2581): e range:

External cover

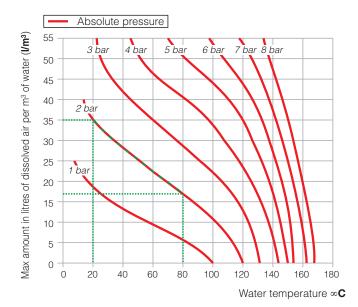

Material: Thickness: Reaction to fire (DIN 4102):	embossed unfinished aluminium 0,7 mm class 1
Head covers Heat moulded material:	PS
To shall all successful atting of last	alation for flammad models

echnical specification of insulation for flanged models DN 125 and DN 150 -----

Inner part				
Material:		closed	cell expan	ded PE-X
Thickness:				60 mm
Density: ii	nner pa	art: 30 kg/m³;	outer part:	80 kg/m³
Thermal conductivity (ISO 2	2581):			
		- at 40°C:	0,045	5 W/(m·K)
Coefficient of resistance to	water v	vapour (DIN 5	2615):	> 1.300
Working temperature range):			0–100°C
Reaction to fire (DIN 4102):				class B2
External cover				
Material:		embossed u	nfinished a	aluminium

Thickness: Reaction to fire (DIN 4102): 0,7 mm class 1

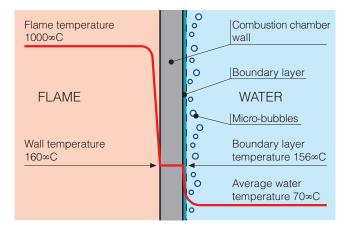
Dimensions


The process of air formation

The amount of air which can remain dissolved in a water solution is a function of pressure and temperature. This relationship is governed by Henry's Law and the graph below allows the physical phenomenon of the air content release of the fluid to be quantified. As an example, at a constant absolute pressure of 2 bar, if the water is heated from 20°C to 80°C, the amount of air released by the solution is equal to 18 l per m³ of water.

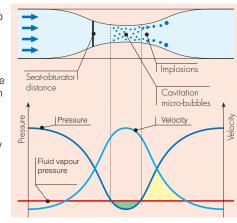
According to this law it can be seen that the amount of air released increases with temperature rise and pressure reduction. The air comes in the form of micro-bubbles of diameters in the order of tenths of a millimetre.

In heating and cooling systems there are specific points where this process of formation of micro-bubbles takes place continuously: in the boiler and in any device which operates under conditions of cavitation.

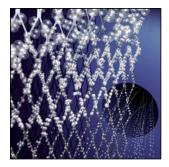

Graph: Solubility of air in water

Boiler micro-bubbles

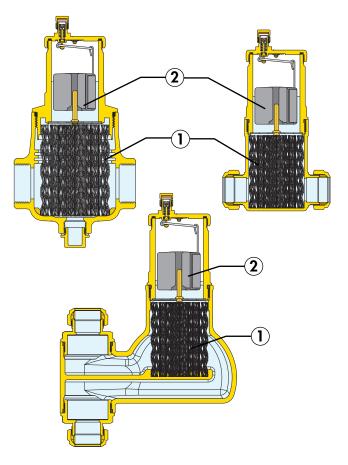
Micro-bubbles are formed continuously on the surface separating the water from the combustion chamber due to the fluid temperature.

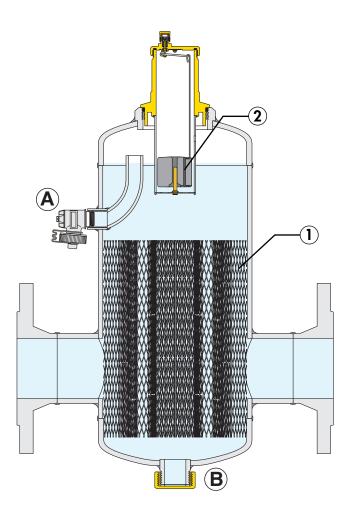

This air, carried by the water, collects in the critical points of the circuit from where it must be removed. Some of this air is reabsorbed in the presence of colder surfaces.

Cavitation micro-bubbles


Micro-bubbles develop where the fluid velocity is very high with the corresponding reduction in pressure.

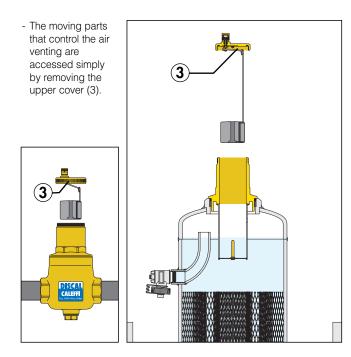
These points are typically the pump impeller and the regulating valve seating. These air and vapour micro-bubbles, the formation of which is enhanced in the case of non de-aerated water, may subsequently implode due to the cavitation phenomenon.

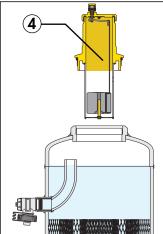



Operating principle

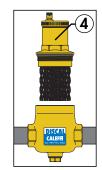
deaerator The uses the combined action of several physical principles. The active part consists of an assembly of concentric metal mesh surfaces (1). These elements create the whirling movement required to facilitate the release of micro-bubbles and their adhesion to these surfaces. The bubbles, fusing with each other increase in volume until the hydrostatic thrust is such as

to overcome the adhesion force to the structure. They rise towards the top of the unit from which they are released through a float-operated automatic air release valve (2). It is designed in such a way that the direction in which the medium is flowing inside it makes no difference.

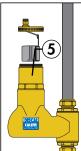



Construction details

The automatic air vent is located at the top of the unit and is equipped with a long chamber for the floating action. This feature prevents the impurities present in the water from reaching the seal seat.


The construction of the DISCAL[®] deaerator allows it to be maintained and cleaned without removing the device from the system. Note the following:

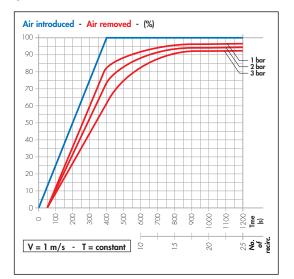
- When cleaning, simply unscrew the part of the body containing the automatic air vent (4). On threaded



(4). On threaded models without a drain, this part cannot be removed (5).

Flanged and weld-end deaerators are equipped with a cock (A) that has the dual function of releasing large quantities of air when the system is being filled and of removing the impurities that float on top of the water.

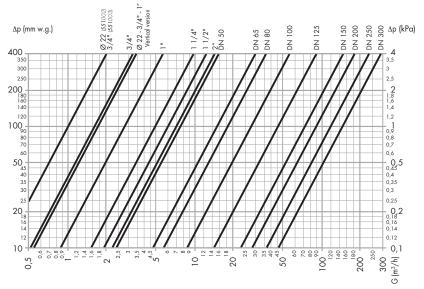
A drain valve (B) can be connected at the bottom of the unit to drain the impurities that have collected at the bottom of the deaerator.


Air separation efficiency

DISCAL[®] devices are capable of continuously removing the air contained within a hydraulic circuit, with a high degree of separation efficiency.

The amount of air which may be removed from a circuit depends on various parameters: it increases as the circulation speed and pressure values fall.

As illustrated on the graph below, after just 25 recirculations at the maximum recommended speed, almost all the air artificially introduced into the circuit is eliminated by the deaerator, with variable percentages according to the pressure within the circuit.


The small amount which remains is then gradually eliminated during normal system operation. In conditions where the speed is slower or the temperature of the medium is higher, the amount of air separated is even greater.

Insulation

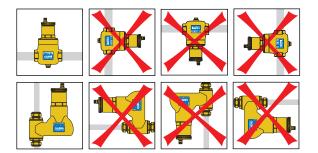
Flanged and weld-end DISCAL® devices (DN 50–DN 150) are supplied complete with hot pre-formed shell insulation. Threaded models codes 551005-6-7-8-9 can be equipped with hot pre-formed shell insulation as optional.

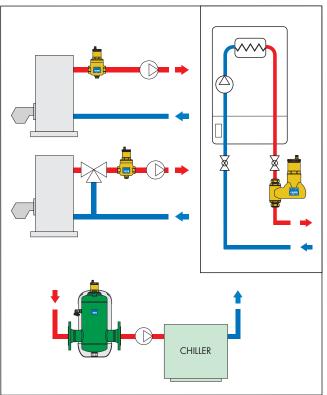
This system ensures not only perfect thermal insulation, but also the tightness required to prevent atmospheric water vapour from entering the unit. For this reason, this type of insulation may also be used in cooling water circuits as it prevents condensation from forming on the surface of the valve body.

DN	20		25	20 / 25 Vertical version		25	32	40	50	
Connections	Ø 22 -	3/4"	3/4"		Ø 22 - 3/4" / 1"		1"	1 1/4"	1 1/2"	2"
Kv (m³/h)	10,	0	16,2		17,0		28,1	48,8	63,2	70,0
DN	50	65	80)	100	125	150	200	250	300
Kv (m³/h)	75,0	150,0	180	,0	280,0	450,0	720,0	900,0	1200,0	1500,0

The maximum recommended speed of the medium at the device connections is \sim 1,2 m/s. The following table gives the maximum flow rates to meet this condition.

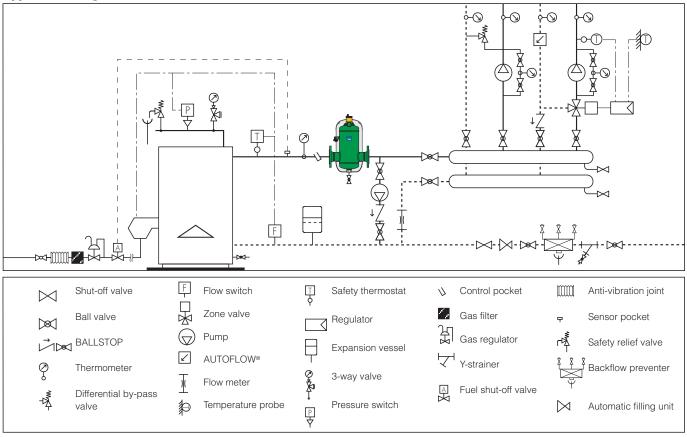
DN	20 / 25			20	25	32	2	40	50
Connections	s Ø 2	Ø 22 - 3/4" / 1"			1"	1 1/	′4" 1	1/2"	2"
l/min		22,7			35,18	57,	85 9	0,33	136,6
m³/h		1,36			2,11	3,4	7 5	5,42	8,20
DN	50	65	80	100	125	150	200	250	300
l/min	141,20	238,6	361,5	564,8	980,0	1436,6	2433,0	3866,0	5416,0
m³/h	8,47	14,32	21,69	33,89	58,8	86,2	146,0	232,0	325,0


Installation


DISCAL[®] units may be used in both heating and cooling systems, to ensure the progressive removal of air which is continuously formed. The units should preferably be installed after the boiler and on the pump suction side, as these are the points where the formation of micro-bubbles is greatest. DISCAL[®] deaerators must be installed in a vertical position, and preferably:

- upstream of the pump where, due to the high speed of the medium and the ensuing drop in pressure, air micro-bubbles develop more easily.

The flow direction of the medium is not important in DISCAL® devices.


In installation sites where inspection is not possible, it is recommended that the air vent cap is replaced with a Caleffi 5620 series hygroscopic safety cap.

Hydraulic characteristics

Application diagram

SPECIFICATION SUMMARY

DISCAL® 551 series

Deaerator, version for horizontal pipes, with drain. Size DN 20 (from DN 20 to DN 50); connections 3/4" F (from 3/4" to 2") with union. Drain 1/2" F with plug. Brass body. PA66G30 internal element. PP float. Brass float guide and stem. Stainless steel float lever and spring. EPDM hydraulic seals. Optional insulation in rigid closed cell expanded PE-X for code 551005-6-7-8-9. Medium water and non-hazardous glycol solutions excluded from the guidelines of EC directive 67/548; maximum percentage of glycol 50%. Maximum working pressure 10 bar. Maximum discharge pressure 10 bar. Working temperature range 0–110°C.

DISCAL® 551 series

Deaerator. Flanged connections DN 50 (from DN 50 to DN 150) PN 16; flanged connections DN 200 (from DN 200 to DN 300) PN 10; to be coupled with counterflanges EN 1092-1. Weld end connections DN 50 (from DN 50 to DN 150). Drain 1" M with plug (2" M with plug from DN 200 to DN 300). Epoxy resin coated steel body. Stainless steel internal element. EPDM hydraulic seals. Medium water and non-hazardous glycol solutions excluded from the guidelines of EC directive 67/548; maximum percentage of glycol 50%. Maximum working pressure 10 bar. Maximum discharge pressure 10 bar. Working temperature range 0–110°C. Automatic air vent: brass body, PP float, brass float guide and stem, stainless steel float lever and spring. Rigid closed cell expanded polyurethane foam insulation for sizes up to DN 100 (closed cell expanded PE-X for DN 125 and DN 150).

DISCAL® 551 series

Deaerator, compact version. Size DN 20 (from DN 20 to DN 32); connection for horizontal or vertical pipes with compression ends for Ø 22 copper pipe, threaded connections 3/4" F (and 1") for vertical pipes, threaded connections 3/4" F for horizontal pipes. Brass body. Stainless steel internal element. PP float. Brass float guide and stem. Stainless steel float lever and spring. EPDM hydraulic seals. Medium water and non-hazardous glycol solutions excluded from the guidelines of EC directive 67/548; maximum percentage of glycol 50%. Maximum working pressure 10 bar. Maximum discharge pressure 10 bar. Working temperature range 0–110°C.

We reserve the right to change our products and their relevant technical data, contained in this publication, at any time and without prior notice.

Caleffi S.p.A. S.R. 229 n. 25 · 28010 Fontaneto d'Agogna (NO) · Italy Tel. +39 0322 8491 · Fax +39 0322 863723 info@caleffi.com · www.caleffi.com © Copyright 2014 Caleffi