FEATURES

\square Converting a DC input into a standard process signal.
\square Two isolated output.

- 4 way isolated.

DIN rail type.

ORDERING INFORMATION

MODEL:S4T-DTDDC Input Range (Input Resistance)

V1:0~50mV* ($\geqq 100 \mathrm{~K} \Omega$)
$\mathrm{V}: 0 \sim 5 \mathrm{~V} \quad(\geqq 1 \mathrm{M} \Omega)$
V3: $1 \sim 5 \mathrm{~V}$
$(\geqq 1 \mathrm{M} \Omega$)
V4: 0~10V
$(\geqq 1 \mathrm{M} \Omega)$
$\mathrm{A} 1: 0 \sim 1 \mathrm{~mA} \quad(\leqq 1 \mathrm{~K} \Omega)$
A3: $0 \sim 20 \mathrm{~mA} \quad(\leqq 50 \Omega)$
A4: $4 \sim 20 \mathrm{~mA} \quad(\leqq 50 \Omega)$
00: Option

* $0 \sim 75 \mathrm{mV}$ is available

DC Output Range - 1 (Output Resistance)

$\mathrm{V} 2: 0 \sim 5 \mathrm{~V}$	$(\geqq 1 \mathrm{~K} \Omega)$	$\mathrm{A} 1: 0 \sim 1 \mathrm{~mA}$
$\mathrm{~V} 3: 1 \sim 5 \mathrm{~V}$	$(0 \sim 10 \mathrm{~K} \Omega)$	
$\mathrm{V} 4: 0 \sim 10 \mathrm{~V}(\geqq 1 \mathrm{~K} \Omega)$	$\mathrm{A} 2: 0 \sim 10 \mathrm{~mA}$	$(0 \sim 1 \mathrm{~K} \Omega)$
00: Option		A3: $0 \sim 20 \mathrm{~mA}(0 \sim 500 \Omega)$
	A4: $4 \sim 20 \mathrm{~mA}(0 \sim 500 \Omega)$	

DC Output Range - 2 (Output Resistance)
V2: $0 \sim 5 \mathrm{~V} \quad(\geqq 1 \mathrm{~K} \Omega) \quad \mathrm{A} 1: 0 \sim 1 \mathrm{~mA} \quad(0 \sim 10 \mathrm{~K} \Omega)$
V3: $1 \sim 5 \mathrm{~V} \quad(\geqq 1 \mathrm{~K} \Omega) \quad \mathrm{A} 2: 0 \sim 10 \mathrm{~mA}(0 \sim 700 \Omega)$
V4: $0 \sim 10 \mathrm{~V}(\geqq 1 \mathrm{~K} \Omega) \quad \mathrm{A}: 0 \sim 20 \mathrm{~mA}(0 \sim 350 \Omega)$
00: Option
A4: $4 \sim 20 \mathrm{~mA}(0 \sim 350 \Omega)$

Power Supply

A: AC / DC 90 ~ 260V
B: DC 20 ~ 60V
0: Option

THE OUTSIDE DIMENSION (UNIT: mm)

Accuracy ..	
Response time	§ 400msec. $0 \sim 99 \%$
Output ripple	$\leq 0.5 \%$ RO. (Peak)
Power supply ... $/ \mathrm{DC} 90 \sim 260 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	
	DC 20 ~ 60V
Power consumption	at $240 \mathrm{~V}, \leqq \mathrm{AC} 7.5 \mathrm{VA}, \leqq \mathrm{DC} 6 \mathrm{~W}$
	$110 \mathrm{~V}, \leqq \mathrm{AC} 4 \mathrm{VA}, \leqq \mathrm{DC} 4 \mathrm{~W}$
Temperature coefficient $\leqq 0.015 \% /{ }^{\circ} \mathrm{C}$
Operating temperature	$-5 \sim 50^{\circ} \mathrm{C}$
Storage temperature	$-10 \sim 70^{\circ} \mathrm{C}$
Max. relative humidity	90\%
Isolation	Input/Output/Power
Dielectric strength .. $1.8 \mathrm{KV} / \mathrm{min}$.	
	tput 1/Output 2 AC $1.0 \mathrm{KV} / \mathrm{min}$.
Insulation resistance	$\geqq 100 \mathrm{M} \Omega$, DC 500 V
Electrostatic discharge	..IEC 61000-4-2.
Electromagnetic fields immunity	IEC 61000-4-3.
Electrical transient in burst	IEC 61000-4-4.
Withstanding impulse voltage	IEC 61000-4-5.
Immunity to voltage dipsIEC 61000	
Weight Abt.140g

SPECIFICATION

DEMAND FOR MOUNTING (UNIT: mm)

SCHEMATIC CIRCUITRY \& CONNECTION DIAGRAM

